TERMS OF USE

AGREEMENT BETWEEN USER AND Society for Molecular Biology and Evolution SECURE MEMBER SERVICES

The Society for Molecular Biology and Evolution Secure Member Services Web Site is comprised of various Web pages operated by Society for Molecular Biology and Evolution Secure Member Services.

The Society for Molecular Biology and Evolution Secure Member Services Web Site is offered to you conditioned on your acceptance without modification of the terms, conditions, and notices contained herein. Your use of the Society for Molecular Biology and Evolution Secure Member Services Web Site constitutes your agreement to all such terms, conditions, and notices.

MODIFICATION OF THESE TERMS OF USE

Society for Molecular Biology and Evolution Secure Member Services reserves the right to change the terms, conditions, and notices under which the Society for Molecular Biology and Evolution Secure Member Services Web Site is offered, including but not limited to the charges associated with the use of the Society for Molecular Biology and Evolution Secure Member Services Web Site.

The Society for Molecular Biology and Evolution Secure Member Services Web Site may contain links to other Web Sites ("Linked Sites"). The Linked Sites are not under the control of Society for Molecular Biology and Evolution Secure Member Services and Society for Molecular Biology and Evolution Secure Member Services is not responsible for the contents of any Linked Site, including without limitation any link contained in a Linked Site, or any changes or updates to a Linked Site. Society for Molecular Biology and Evolution Secure Member Services is not responsible for webcasting or any other form of transmission received from any Linked Site. Society for Molecular Biology and Evolution Secure Member Services is providing these links to you only as a convenience, and the inclusion of any link does not imply endorsement by Society for Molecular Biology and Evolution Secure Member Services of the site or any association with its operators.

NO UNLAWFUL OR PROHIBITED USE

As a condition of your use of the Society for Molecular Biology and Evolution Secure Member Services Web Site, you warrant to Society for Molecular Biology and Evolution Secure Member Services that you will not use the Society for Molecular Biology and Evolution Secure Member Services Web Site for any purpose that is unlawful or prohibited by these terms, conditions, and notices. You may not use the Society for Molecular Biology and Evolution Secure Member Services Web Site in any manner which could damage, disable, overburden, or impair the Society for Molecular Biology and Evolution Secure Member Services Web Site or interfere with any other party's use and enjoyment of the Society for Molecular Biology and Evolution Secure Member Services Web Site. You may not obtain or attempt to obtain any materials or information through any means not intentionally made available or provided for through the Society for Molecular Biology and Evolution Secure Member Services Web Sites.

USE OF COMMUNICATION SERVICES

The Society for Molecular Biology and Evolution Secure Member Services Web Site may contain bulletin board services, chat areas, news groups, forums, communities, personal web pages, calendars, and/or other message or communication facilities designed to enable you to communicate with the public at large or with a group (collectively, "Communication Services"), you agree to use the Communication Services only to post, send and receive messages and material that are proper and related to the particular Communication Service. By way of example, and not as a limitation, you agree that when using a Communication Service, you will not:

  • Defame, abuse, harass, stalk, threaten or otherwise violate the legal rights (such as rights of privacy and publicity) of others.
  • Publish, post, upload, distribute or disseminate any inappropriate, profane, defamatory, infringing, obscene, indecent or unlawful topic, name, material or information.
  • Upload files that contain software or other material protected by intellectual property laws (or by rights of privacy of publicity) unless you own or control the rights thereto or have received all necessary consents.
  • Upload files that contain viruses, corrupted files, or any other similar software or programs that may damage the operation of another's computer.
  • Advertise or offer to sell or buy any goods or services for any business purpose, unless such Communication Service specifically allows such messages.
  • Conduct or forward surveys, contests, pyramid schemes or chain letters.
  • Download any file posted by another user of a Communication Service that you know, or reasonably should know, cannot be legally distributed in such manner.
  • Falsify or delete any author attributions, legal or other proper notices or proprietary designations or labels of the origin or source of software or other material contained in a file that is uploaded.
  • Restrict or inhibit any other user from using and enjoying the Communication Services.
  • Violate any code of conduct or other guidelines which may be applicable for any particular Communication Service.
  • Harvest or otherwise collect information about others, including e-mail addresses, without their consent.
  • Violate any applicable laws or regulations.

Society for Molecular Biology and Evolution Secure Member Services has no obligation to monitor the Communication Services. However, Society for Molecular Biology and Evolution Secure Member Services reserves the right to review materials posted to a Communication Service and to remove any materials in its sole discretion. Society for Molecular Biology and Evolution Secure Member Services reserves the right to terminate your access to any or all of the Communication Services at any time without notice for any reason whatsoever.

Society for Molecular Biology and Evolution Secure Member Services reserves the right at all times to disclose any information as necessary to satisfy any applicable law, regulation, legal process or governmental request, or to edit, refuse to post or to remove any information or materials, in whole or in part, in Society for Molecular Biology and Evolution Secure Member Services's sole discretion.

Always use caution when giving out any personally identifying information about yourself or your children in any Communication Service. Society for Molecular Biology and Evolution Secure Member Services does not control or endorse the content, messages or information found in any Communication Service and, therefore, Society for Molecular Biology and Evolution Secure Member Services specifically disclaims any liability with regard to the Communication Services and any actions resulting from your participation in any Communication Service. Managers and hosts are not authorized Society for Molecular Biology and Evolution Secure Member Services spokespersons, and their views do not necessarily reflect those of Society for Molecular Biology and Evolution Secure Member Services.

Materials uploaded to a Communication Service may be subject to posted limitations on usage, reproduction and/or dissemination. You are responsible for adhering to such limitations if you download the materials.

MATERIALS PROVIDED TO Society for Molecular Biology and Evolution Secure Member Services OR POSTED AT ANY Society for Molecular Biology and Evolution Secure Member Services WEB SITE

Society for Molecular Biology and Evolution Secure Member Services does not claim ownership of the materials you provide to Society for Molecular Biology and Evolution Secure Member Services (including feedback and suggestions) or post, upload, input or submit to any Society for Molecular Biology and Evolution Secure Member Services Web Site or its associated services (collectively "Submissions"). However, by posting, uploading, inputting, providing or submitting your Submission you are granting Society for Molecular Biology and Evolution Secure Member Services, its affiliated companies and necessary sublicensees permission to use your Submission in connection with the operation of their Internet businesses including, without limitation, the rights to: copy, distribute, transmit, publicly display, publicly perform, reproduce, edit, translate and reformat your Submission; and to publish your name in connection with your Submission.

compensation will be paid with respect to the use of your Submission, as provided herein. Society for Molecular Biology and Evolution Secure Member Services is under no obligation to post or use any Submission you may provide and may remove any Submission at any time in Society for Molecular Biology and Evolution Secure Member Services's sole discretion.

By posting, uploading, inputting, providing or submitting your Submission you warrant and represent that you own or otherwise control all of the rights to your Submission as described in this section including, without limitation, all the rights necessary for you to provide, post, upload, input or submit the Submissions.

LIABILITY DISCLAIMER

THE INFORMATION, SOFTWARE, PRODUCTS, AND SERVICES INCLUDED IN OR AVAILABLE THROUGH THE Society for Molecular Biology and Evolution Secure Member Services WEB SITE MAY INCLUDE INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN. Society for Molecular Biology and Evolution Secure Member Services AND/OR ITS SUPPLIERS MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE Society for Molecular Biology and Evolution Secure Member Services WEB SITE AT ANY TIME. ADVICE RECEIVED VIA THE Society for Molecular Biology and Evolution Secure Member Services WEB SITE SHOULD NOT BE RELIED UPON FOR PERSONAL, MEDICAL, LEGAL OR FINANCIAL DECISIONS AND YOU SHOULD CONSULT AN APPROPRIATE PROFESSIONAL FOR SPECIFIC ADVICE TAILORED TO YOUR SITUATION.

Society for Molecular Biology and Evolution Secure Member Services AND/OR ITS SUPPLIERS MAKE NO REPRESENTATIONS ABOUT THE SUITABILITY, RELIABILITY, AVAILABILITY, TIMELINESS, AND ACCURACY OF THE INFORMATION, SOFTWARE, PRODUCTS, SERVICES AND RELATED GRAPHICS CONTAINED ON THE Society for Molecular Biology and Evolution Secure Member Services WEB SITE FOR ANY PURPOSE. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, ALL SUCH INFORMATION, SOFTWARE, PRODUCTS, SERVICES AND RELATED GRAPHICS ARE PROVIDED "AS IS" WITHOUT WARRANTY OR CONDITION OF ANY KIND. Society for Molecular Biology and Evolution Secure Member Services AND/OR ITS SUPPLIERS HEREBY DISCLAIM ALL WARRANTIES AND CONDITIONS WITH REGARD TO THIS INFORMATION, SOFTWARE, PRODUCTS, SERVICES AND RELATED GRAPHICS, INCLUDING ALL IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL Society for Molecular Biology and Evolution Secure Member Services AND/OR ITS SUPPLIERS BE LIABLE FOR ANY DIRECT, INDIRECT, PUNITIVE, INCIDENTAL, SPECIAL, CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF USE, DATA OR PROFITS, ARISING OUT OF OR IN ANY WAY CONNECTED WITH THE USE OR PERFORMANCE OF THE Society for Molecular Biology and Evolution Secure Member Services WEB SITE, WITH THE DELAY OR INABILITY TO USE THE Society for Molecular Biology and Evolution Secure Member Services WEB SITE OR RELATED SERVICES, THE PROVISION OF OR FAILURE TO PROVIDE SERVICES, OR FOR ANY INFORMATION, SOFTWARE, PRODUCTS, SERVICES AND RELATED GRAPHICS OBTAINED THROUGH THE Society for Molecular Biology and Evolution Secure Member Services WEB SITE, OR OTHERWISE ARISING OUT OF THE USE OF THE Society for Molecular Biology and Evolution Secure Member Services WEB SITE, WHETHER BASED ON CONTRACT, TORT, NEGLIGENCE, STRICT LIABILITY OR OTHERWISE, EVEN IF Society for Molecular Biology and Evolution Secure Member Services OR ANY OF ITS SUPPLIERS HAS BEEN ADVISED OF THE POSSIBILITY OF DAMAGES. BECAUSE SOME STATES/JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATION MAY NOT APPLY TO YOU. IF YOU ARE DISSATISFIED WITH ANY PORTION OF THE Society for Molecular Biology and Evolution Secure Member Services WEB SITE, OR WITH ANY OF THESE TERMS OF USE, YOUR SOLE AND EXCLUSIVE REMEDY IS TO DISCONTINUE USING THE Society for Molecular Biology and Evolution Secure Member Services WEB SITE.

SERVICE CONTACT : Society for Molecular Biology and Evolution@allenpress.com

TERMINATION/ACCESS RESTRICTION

Society for Molecular Biology and Evolution Secure Member Services reserves the right, in its sole discretion, to terminate your access to the Society for Molecular Biology and Evolution Secure Member Services Web Site and the related services or any portion thereof at any time, without notice. GENERAL To the maximum extent permitted by law, this agreement is governed by the laws of the State of Washington, U.S.A. and you hereby consent to the exclusive jurisdiction and venue of courts in King County, Washington, U.S.A. in all disputes arising out of or relating to the use of the Society for Molecular Biology and Evolution Secure Member Services Web Site. Use of the Society for Molecular Biology and Evolution Secure Member Services Web Site is unauthorized in any jurisdiction that does not give effect to all provisions of these terms and conditions, including without limitation this paragraph. You agree that no joint venture, partnership, employment, or agency relationship exists between you and Society for Molecular Biology and Evolution Secure Member Services as a result of this agreement or use of the Society for Molecular Biology and Evolution Secure Member Services Web Site. Society for Molecular Biology and Evolution Secure Member Services's performance of this agreement is subject to existing laws and legal process, and nothing contained in this agreement is in derogation of Society for Molecular Biology and Evolution Secure Member Services's right to comply with governmental, court and law enforcement requests or requirements relating to your use of the Society for Molecular Biology and Evolution Secure Member Services Web Site or information provided to or gathered by Society for Molecular Biology and Evolution Secure Member Services with respect to such use. If any part of this agreement is determined to be invalid or unenforceable pursuant to applicable law including, but not limited to, the warranty disclaimers and liability limitations set forth above, then the invalid or unenforceable provision will be deemed superseded by a valid, enforceable provision that most closely matches the intent of the original provision and the remainder of the agreement shall continue in effect. Unless otherwise specified herein, this agreement constitutes the entire agreement between the user and Society for Molecular Biology and Evolution Secure Member Services with respect to the Society for Molecular Biology and Evolution Secure Member Services Web Site and it supersedes all prior or contemporaneous communications and proposals, whether electronic, oral or written, between the user and Society for Molecular Biology and Evolution Secure Member Services with respect to the Society for Molecular Biology and Evolution Secure Member Services Web Site. A printed version of this agreement and of any notice given in electronic form shall be admissible in judicial or administrative proceedings based upon or relating to this agreement to the same extent an d subject to the same conditions as other business documents and records originally generated and maintained in printed form. It is the express wish to the parties that this agreement and all related documents be drawn up in English.

All contents of the Society for Molecular Biology and Evolution Secure Member Services Web Site are: eBusiness assistance provided by Allen Press, Inc. and/or its suppliers. All rights reserved.

TRADEMARKS

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, people and events depicted herein are fictitious. No association with any real company, organization, product, person, or event is intended or should be inferred.

Any rights not expressly granted herein are reserved.

NOTICES AND PROCEDURE FOR MAKING CLAIMS OF COPYRIGHT INFRINGEMENT

Pursuant to Title 17, United States Code, Section 512(c)(2), notifications of claimed copyright infringement under United States copyright law should be sent to Service Provider's Designated Agent. ALL INQUIRIES NOT RELEVANT TO THE FOLLOWING PROCEDURE WILL RECEIVE NO RESPONSE. See Notice and Procedure for Making Claims of Copyright Infringement.

@OfficialSMBE Feed

MBE | Most Read

Molecular Biology and Evolution

Erratum: Causes and Consequences of Bacteriophage Diversification via Genetic Exchanges across Lifestyles and Bacterial Taxa

Mon, 12 Apr 2021 00:00:00 GMT

Mol. Biol. Evol. doi:10.1093/molbev/msab044

Erratum to: A Two-Locus System with Strong Epistasis Underlies Rapid Parasite-Mediated Evolution of Host Resistance

Mon, 12 Apr 2021 00:00:00 GMT

Mol. Biol. Evol. doi: 10.1093/molbev/msaa311

Corrigendum to: Genomic analysis revealed a convergent evolution of LINE-1 in coat color: A case study in water buffaloes (Bubalus bubalis)

Mon, 12 Apr 2021 00:00:00 GMT

Dong Liang, Pengju Zhao, Jingfang Si, Lingzhao Fang, Erola Pairo-Castineira, Xiaoxiang Hu, Qing Xu, Yali Hou, Yu Gong, Zhengwen Liang, Bing Tian, Huaming Mao, Marnoch Yindee, Md Omar Faruque, Siton Kongvongxay, Souksamlane Khamphoumee, George E. Liu, Dong-Dong Wu, James Stuart F. Barker, Jianlin Han, and Yi Zhang

Reconstruction of the Origin of a Neo-Y Sex Chromosome and Its Evolution in the Spotted Knifejaw, Oplegnathus punctatus

Tue, 09 Mar 2021 00:00:00 GMT

Abstract
Sex chromosomes are a peculiar constituent of the genome because the evolutionary forces that fix the primary sex-determining gene cause genic degeneration and accumulation of junk DNA in the heterogametic partner. One of the most spectacular phenomena in sex chromosome evolution is the occurrence of neo-Y chromosomes, which lead to X1X2Y sex-determining systems. Such neo-sex chromosomes are critical for understanding the processes of sex chromosome evolution because they rejuvenate their total gene content. We assembled the male and female genomes at the chromosome level of the spotted knifejaw (Oplegnathus punctatus), which has a cytogenetically recognized neo-Y chromosome. The full assembly and annotation of all three sex chromosomes allowed us to reconstruct their evolutionary history. Contrary to other neo-Y chromosomes, the fusion to X2 is quite ancient, estimated at 48 Ma. Despite its old age and being even older in the X1 homologous region which carries a huge inversion that occurred as early as 55–48 Ma, genetic degeneration of the neo-Y appears to be only moderate. Transcriptomic analysis showed that sex chromosomes harbor 87 genes, which may serve important functions in the testis. The accumulation of such male-beneficial genes, a large inversion on the X1 homologous region and fusion to X2 appear to be the main drivers of neo-Y evolution in the spotted knifejaw. The availability of high-quality assemblies of the neo-Y and both X chromosomes make this fish an ideal model for a better understanding of the variability of sex determination mechanisms and of sex chromosome evolution.

Males That Silence Their Father’s Genes: Genomic Imprinting of a Complete Haploid Genome

Thu, 04 Mar 2021 00:00:00 GMT

Abstract
Genetic conflict is considered a key driver in the evolution of reproductive systems with non-Mendelian inheritance, where parents do not contribute equally to the genetic makeup of their offspring. One of the most extraordinary examples of non-Mendelian inheritance is paternal genome elimination (PGE), a form of haplodiploidy which has evolved repeatedly across arthropods. Under PGE, males are diploid but only transmit maternally inherited chromosomes, while the paternally inherited homologues are excluded from sperm. This asymmetric inheritance is thought to have evolved through an evolutionary arms race between the paternal and maternal genomes over transmission to future generations. In several PGE clades, such as the mealybugs (Hemiptera: Pseudococcidae), paternal chromosomes are not only eliminated from sperm, but also heterochromatinized early in development and thought to remain inactive, which could result from genetic conflict between parental genomes. Here, we present a parent-of-origin allele-specific transcriptome analysis in male mealybugs showing that expression is globally biased toward the maternal genome. However, up to 70% of somatically expressed genes are to some degree paternally expressed, while paternal genome expression is much more restricted in the male reproductive tract, with only 20% of genes showing paternal contribution. We also show that parent-of-origin-specific gene expression patterns are remarkably similar across genotypes, and that genes with completely biparental expression show elevated rates of molecular evolution. Our results provide the clearest example yet of genome-wide genomic imprinting in insects and enhance our understanding of PGE, which will aid future empirical tests of evolutionary theory regarding the origin of this unusual reproductive strategy.

Parallel Genomic Changes Drive Repeated Evolution of Placentas in Live-Bearing Fish

Tue, 23 Feb 2021 00:00:00 GMT

Abstract
The evolutionary origin of complex organs challenges empirical study because most organs evolved hundreds of millions of years ago. The placenta of live-bearing fish in the family Poeciliidae represents a unique opportunity to study the evolutionary origin of complex organs, because in this family a placenta evolved at least nine times independently. It is currently unknown whether this repeated evolution is accompanied by similar, repeated, genomic changes in placental species. Here, we compare whole genomes of 26 poeciliid species representing six out of nine independent origins of placentation. Evolutionary rate analysis revealed that the evolution of the placenta coincides with convergent shifts in the evolutionary rate of 78 protein-coding genes, mainly observed in transporter- and vesicle-located genes. Furthermore, differences in sequence conservation showed that placental evolution coincided with similar changes in 76 noncoding regulatory elements, occurring primarily around genes that regulate development. The unexpected high occurrence of GATA simple repeats in the regulatory elements suggests an important function for GATA repeats in developmental gene regulation. The distinction in molecular evolution observed, with protein-coding parallel changes more often found in metabolic and structural pathways, compared with regulatory change more frequently found in developmental pathways, offers a compelling model for complex trait evolution in general: changing the regulation of otherwise highly conserved developmental genes may allow for the evolution of complex traits.

Mitonuclear Coevolution, but not Nuclear Compensation, Drives Evolution of OXPHOS Complexes in Bivalves

Mon, 22 Feb 2021 00:00:00 GMT

Abstract
In Metazoa, four out of five complexes involved in oxidative phosphorylation (OXPHOS) are formed by subunits encoded by both the mitochondrial (mtDNA) and nuclear (nuDNA) genomes, leading to the expectation of mitonuclear coevolution. Previous studies have supported coadaptation of mitochondria-encoded (mtOXPHOS) and nuclear-encoded OXPHOS (nuOXPHOS) subunits, often specifically interpreted with regard to the “nuclear compensation hypothesis,” a specific form of mitonuclear coevolution where nuclear genes compensate for deleterious mitochondrial mutations due to less efficient mitochondrial selection. In this study, we analyzed patterns of sequence evolution of 79 OXPHOS subunits in 31 bivalve species, a taxon showing extraordinary mtDNA variability and including species with “doubly uniparental” mtDNA inheritance. Our data showed strong and clear signals of mitonuclear coevolution. NuOXPHOS subunits had concordant topologies with mtOXPHOS subunits, contrary to previous phylogenies based on nuclear genes lacking mt interactions. Evolutionary rates between mt and nuOXPHOS subunits were also highly correlated compared with non-OXPHO-interacting nuclear genes. Nuclear subunits of chimeric OXPHOS complexes (I, III, IV, and V) also had higher dN/dS ratios than Complex II, which is formed exclusively by nuDNA-encoded subunits. However, we did not find evidence of nuclear compensation: mitochondria-encoded subunits showed similar dN/dS ratios compared with nuclear-encoded subunits, contrary to most previously studied bilaterian animals. Moreover, no site-specific signals of compensatory positive selection were detected in nuOXPHOS genes. Our analyses extend the evidence for mitonuclear coevolution to a new taxonomic group, but we propose a reconsideration of the nuclear compensation hypothesis.

Adaptive Admixture of HLA Class I Allotypes Enhanced Genetically Determined Strength of Natural Killer Cells in East Asians

Mon, 22 Feb 2021 00:00:00 GMT

Abstract
Human natural killer (NK) cells are essential for controlling infection, cancer, and fetal development. NK cell functions are modulated by interactions between polymorphic inhibitory killer cell immunoglobulin-like receptors (KIR) and polymorphic HLA-A, -B, and -C ligands expressed on tissue cells. All HLA-C alleles encode a KIR ligand and contribute to reproduction and immunity. In contrast, only some HLA-A and -B alleles encode KIR ligands and they focus on immunity. By high-resolution analysis of KIR and HLA-A, -B, and -C genes, we show that the Chinese Southern Han (CHS) are significantly enriched for interactions between inhibitory KIR and HLA-A and -B. This enrichment has had substantial input through population admixture with neighboring populations, who contributed HLA class I haplotypes expressing the KIR ligands B*46:01 and B*58:01, which subsequently rose to high frequency by natural selection. Consequently, over 80% of Southern Han HLA haplotypes encode more than one KIR ligand. Complementing the high number of KIR ligands, the CHS KIR locus combines a high frequency of genes expressing potent inhibitory KIR, with a low frequency of those expressing activating KIR. The Southern Han centromeric KIR region encodes strong, conserved, inhibitory HLA-C-specific receptors, and the telomeric region provides a high number and diversity of inhibitory HLA-A and -B-specific receptors. In all these characteristics, the CHS represent other East Asians, whose NK cell repertoires are thus enhanced in quantity, diversity, and effector strength, likely augmenting resistance to endemic viral infections.

Comparative Genomics Reveals Early Emergence and Biased Spatiotemporal Distribution of SARS-CoV-2

Fri, 19 Feb 2021 00:00:00 GMT

Abstract
Effective systems for the analysis of molecular data are fundamental for monitoring the spread of infectious diseases and studying pathogen evolution. The rapid identification of emerging viral strains, and/or genetic variants potentially associated with novel phenotypic features is one of the most important objectives of genomic surveillance of human pathogens and represents one of the first lines of defense for the control of their spread. During the COVID 19 pandemic, several taxonomic frameworks have been proposed for the classification of SARS-Cov-2 isolates. These systems, which are typically based on phylogenetic approaches, represent essential tools for epidemiological studies as well as contributing to the study of the origin of the outbreak. Here, we propose an alternative, reproducible, and transparent phenetic method to study changes in SARS-CoV-2 genomic diversity over time. We suggest that our approach can complement other systems and facilitate the identification of biologically relevant variants in the viral genome. To demonstrate the validity of our approach, we present comparative genomic analyses of more than 175,000 genomes. Our method delineates 22 distinct SARS-CoV-2 haplogroups, which, based on the distribution of high-frequency genetic variants, fall into four major macrohaplogroups. We highlight biased spatiotemporal distributions of SARS-CoV-2 genetic profiles and show that seven of the 22 haplogroups (and of all of the four haplogroup clusters) showed a broad geographic distribution within China by the time the outbreak was widely recognized—suggesting early emergence and widespread cryptic circulation of the virus well before its isolation in January 2020. General patterns of genomic variability are remarkably similar within all major SARS-CoV-2 haplogroups, with UTRs consistently exhibiting the greatest variability, with s2m, a conserved secondary structure element of unknown function in the 3′-UTR of the viral genome showing evidence of a functional shift. Although several polymorphic sites that are specific to one or more haplogroups were predicted to be under positive or negative selection, overall our analyses suggest that the emergence of novel types is unlikely to be driven by convergent evolution and independent fixation of advantageous substitutions, or by selection of recombined strains. In the absence of extensive clinical metadata for most available genome sequences, and in the context of extensive geographic and temporal biases in the sampling, many questions regarding the evolution and clinical characteristics of SARS-CoV-2 isolates remain open. However, our data indicate that the approach outlined here can be usefully employed in the identification of candidate SARS-CoV-2 genetic variants of clinical and epidemiological importance.

Suboptimal Intermediates Underlie Evolution of the Bicoid Homeodomain

Thu, 18 Feb 2021 00:00:00 GMT

Abstract
Changes in regulatory networks generate materials for evolution to create phenotypic diversity. For transcription networks, multiple studies have shown that alterations in binding sites of cis-regulatory elements correlate well with the gain or loss of specific features of the body plan. Less is known about alterations in the amino acid sequences of the transcription factors (TFs) that bind these elements. Here we study the evolution of Bicoid (Bcd), a homeodomain (HD) protein that is critical for anterior embryo patterning in Drosophila. The ancestor of Bcd (AncBcd) emerged after a duplication of a Zerknullt (Zen)-like ancestral protein (AncZB) in a suborder of flies. AncBcd diverged from AncZB, gaining novel transcriptional and translational activities. We focus on the evolution of the HD of AncBcd, which binds to DNA and RNA, and is comprised of four subdomains: an N-terminal arm (NT) and three helices; H1, H2, and Recognition Helix (RH). Using chimeras of subdomains and gene rescue assays in Drosophila, we show that robust patterning activity of the Bcd HD (high frequency rescue to adulthood) is achieved only when amino acid substitutions in three separate subdomains (NT, H1, and RH) are combined. Other combinations of subdomains also yield full rescue, but with lower penetrance, suggesting alternative suboptimal activities. Our results suggest a multistep pathway for the evolution of the Bcd HD that involved intermediate HD sequences with suboptimal activities, which constrained and enabled further evolutionary changes. They also demonstrate critical epistatic forces that contribute to the robust function of a DNA-binding domain.

Herbicide Selection Promotes Antibiotic Resistance in Soil Microbiomes

Tue, 16 Feb 2021 00:00:00 GMT

Abstract
Herbicides are one of the most widely used chemicals in agriculture. While they are known to be harmful to nontarget organisms, the effects of herbicides on the composition and functioning of soil microbial communities remain unclear. Here we show that application of three widely used herbicides—glyphosate, glufosinate, and dicamba—increase the prevalence of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in soil microbiomes without clear changes in the abundance, diversity and composition of bacterial communities. Mechanistically, these results could be explained by a positive selection for more tolerant genotypes that acquired several mutations in previously well-characterized herbicide and ARGs. Moreover, herbicide exposure increased cell membrane permeability and conjugation frequency of multidrug resistance plasmids, promoting ARG movement between bacteria. A similar pattern was found in agricultural soils across 11 provinces in China, where herbicide application, and the levels of glyphosate residues in soils, were associated with increased ARG and MGE abundances relative to herbicide-free control sites. Together, our results show that herbicide application can enrich ARGs and MGEs by changing the genetic composition of soil microbiomes, potentially contributing to the global antimicrobial resistance problem in agricultural environments.

B2 SINE Copies Serve as a Transposable Boundary of DNA Methylation and Histone Modifications in the Mouse

Tue, 16 Feb 2021 00:00:00 GMT

Abstract
More than one million copies of short interspersed elements (SINEs), a class of retrotransposons, are present in the mammalian genomes, particularly within gene-rich genomic regions. Evidence has accumulated that ancient SINE sequences have acquired new binding sites for transcription factors (TFs) through multiple mutations following retrotransposition, and as a result have rewired the host regulatory network during the course of evolution. However, it remains unclear whether currently active SINEs contribute to the expansion of TF binding sites. To study the mobility, expression, and function of SINE copies, we first identified about 2,000 insertional polymorphisms of SINE B1 and B2 families within Mus musculus. Using a novel RNA sequencing method designated as melRNA-seq, we detected the expression of SINEs in male germ cells at both the subfamily and genomic copy levels: the vast majority of B1 RNAs originated from evolutionarily young subfamilies, whereas B2 RNAs originated from both young and old subfamilies. DNA methylation and chromatin immunoprecipitation-sequencing (ChIP-seq) analyses in liver revealed that polymorphic B2 insertions served as a boundary element inhibiting the expansion of DNA hypomethylated and histone hyperacetylated regions, and decreased the expression of neighboring genes. Moreover, genomic B2 copies were enriched at the boundary of various histone modifications, and chromatin insulator protein, CCCTC-binding factor, a well-known chromatin boundary protein, bound to >100 polymorphic and >10,000 non-polymorphic B2 insertions. These results suggest that the currently active B2 copies are mobile boundary elements that can modulate chromatin modifications and gene expression, and are likely involved in epigenomic and phenotypic diversification of the mouse species.

Recent Evolutionary History of Tigers Highlights Contrasting Roles of Genetic Drift and Selection

Tue, 16 Feb 2021 00:00:00 GMT

Abstract
Species conservation can be improved by knowledge of evolutionary and genetic history. Tigers are among the most charismatic of endangered species and garner significant conservation attention. However, their evolutionary history and genomic variation remain poorly known, especially for Indian tigers. With 70% of the world’s wild tigers living in India, such knowledge is critical. We re-sequenced 65 individual tiger genomes representing most extant subspecies with a specific focus on tigers from India. As suggested by earlier studies, we found strong genetic differentiation between the putative tiger subspecies. Despite high total genomic diversity in India, individual tigers host longer runs of homozygosity, potentially suggesting recent inbreeding or founding events, possibly due to small and fragmented protected areas. We suggest the impacts of ongoing connectivity loss on inbreeding and persistence of Indian tigers be closely monitored. Surprisingly, demographic models suggest recent divergence (within the last 20,000 years) between subspecies and strong population bottlenecks. Amur tiger genomes revealed the strongest signals of selection related to metabolic adaptation to cold, whereas Sumatran tigers show evidence of weak selection for genes involved in body size regulation. We recommend detailed investigation of local adaptation in Amur and Sumatran tigers prior to initiating genetic rescue.

The Transcriptional and Splicing Changes Caused by Hybridization Can Be Globally Recovered by Genome Doubling during Allopolyploidization

Mon, 15 Feb 2021 00:00:00 GMT

Abstract
Polyploidization is a major driving force in plant evolution. Allopolyploidization, involving hybridization and genome doubling, can cause extensive transcriptome reprogramming which confers allopolyploids higher evolutionary potential than their diploid progenitors. To date, little is known about the interplay between hybridization and genome doubling in transcriptome reprogramming. Here, we performed genome-wide analyses of transcriptome reprogramming during allopolyploidization in wheat and brassica lineages. Our results indicated that hybridization-induced transcriptional and splicing changes of genes can be largely recovered to parental levels by genome doubling in allopolyploids. As transcriptome reprogramming is an important contributor to heterosis, our finding updates a longstanding theory that heterosis in interspecific hybrids can be permanently fixed through genome doubling. Our results also indicated that much of the transcriptome reprogramming in interspecific hybrids was not caused by the merging of two parental genomes, providing novel insights into the mechanisms underlying both heterosis and hybrid speciation.

Global Patterns of Recombination across Human Viruses

Mon, 15 Feb 2021 00:00:00 GMT

Abstract
Viral recombination is a major evolutionary mechanism driving adaptation processes, such as the ability of host-switching. Understanding global patterns of recombination could help to identify underlying mechanisms and to evaluate the potential risks of rapid adaptation. Conventional approaches (e.g., those based on linkage disequilibrium) are computationally demanding or even intractable when sequence alignments include hundreds of sequences, common in viral data sets. We present a comprehensive analysis of recombination across 30 genomic alignments from viruses infecting humans. In order to scale the analysis and avoid the computational limitations of conventional approaches, we apply newly developed topological data analysis methods able to infer recombination rates for large data sets. We show that viruses, such as ZEBOV and MARV, consistently displayed low levels of recombination, whereas high levels of recombination were observed in Sarbecoviruses, HBV, HEV, Rhinovirus A, and HIV. We observe that recombination is more common in positive single-stranded RNA viruses than in negatively single-stranded RNA ones. Interestingly, the comparison across multiple viruses suggests an inverse correlation between genome length and recombination rate. Positional analyses of recombination breakpoints along viral genomes, combined with our approach, detected at least 39 nonuniform patterns of recombination (i.e., cold or hotspots) in 18 viral groups. Among these, noteworthy hotspots are found in MERS-CoV and Sarbecoviruses (at spike, Nucleocapsid and ORF8). In summary, we have developed a fast pipeline to measure recombination that, combined with other approaches, has allowed us to find both common and lineage-specific patterns of recombination among viruses with potential relevance in viral adaptation.

Behavioral and Genomic Sensory Adaptations Underlying the Pest Activity of Drosophila suzukii

Mon, 15 Feb 2021 00:00:00 GMT

Abstract
Studying how novel phenotypes originate and evolve is fundamental to the field of evolutionary biology as it allows us to understand how organismal diversity is generated and maintained. However, determining the basis of novel phenotypes is challenging as it involves orchestrated changes at multiple biological levels. Here, we aim to overcome this challenge by using a comparative species framework combining behavioral, gene expression, and genomic analyses to understand the evolutionary novel egg-laying substrate-choice behavior of the invasive pest species Drosophila suzukii. First, we used egg-laying behavioral assays to understand the evolution of ripe fruit oviposition preference in D. suzukii compared with closely related species D. subpulchrella and D. biarmipes as well as D. melanogaster. We show that D. subpulchrella and D. biarmipes lay eggs on both ripe and rotten fruits, suggesting that the transition to ripe fruit preference was gradual. Second, using two-choice oviposition assays, we studied how D. suzukii, D. subpulchrella, D. biarmipes, and D. melanogaster differentially process key sensory cues distinguishing ripe from rotten fruit during egg-laying. We found that D. suzukii’s preference for ripe fruit is in part mediated through a species-specific preference for stiff substrates. Last, we sequenced and annotated a high-quality genome for D. subpulchrella. Using comparative genomic approaches, we identified candidate genes involved in D. suzukii’s ability to seek out and target ripe fruits. Our results provide detail to the stepwise evolution of pest activity in D. suzukii, indicating important cues used by this species when finding a host, and the molecular mechanisms potentially underlying their adaptation to a new ecological niche.

Causes and Consequences of Bacteriophage Diversification via Genetic Exchanges across Lifestyles and Bacterial Taxa

Thu, 11 Feb 2021 00:00:00 GMT

Abstract
Bacteriophages (phages) evolve rapidly by acquiring genes from other phages. This results in mosaic genomes. Here, we identify numerous genetic transfers between distantly related phages and aim at understanding their frequency, consequences, and the conditions favoring them. Gene flow tends to occur between phages that are enriched for recombinases, transposases, and nonhomologous end joining, suggesting that both homologous and illegitimate recombination contribute to gene flow. Phage family and host phyla are strong barriers to gene exchange, but phage lifestyle is not. Even if we observe four times more recent transfers between temperate phages than between other pairs, there is extensive gene flow between temperate and virulent phages, and between the latter. These predominantly involve virulent phages with large genomes previously classed as low gene flux, and lead to the preferential transfer of genes encoding functions involved in cell energetics, nucleotide metabolism, DNA packaging and injection, and virion assembly. Such exchanges may contribute to the observed twice larger genomes of virulent phages. We used genetic transfers, which occur upon coinfection of a host, to compare phage host range. We found that virulent phages have broader host ranges and can mediate genetic exchanges between narrow host range temperate phages infecting distant bacterial hosts, thus contributing to gene flow between virulent phages, as well as between temperate phages. This gene flow drastically expands the gene repertoires available for phage and bacterial evolution, including the transfer of functional innovations across taxa.

Taxonomic Sampling and Rare Genomic Changes Overcome Long-Branch Attraction in the Phylogenetic Placement of Pseudoscorpions

Wed, 10 Feb 2021 00:00:00 GMT

Abstract
Long-branch attraction is a systematic artifact that results in erroneous groupings of fast-evolving taxa. The combination of short, deep internodes in tandem with long-branch attraction artifacts has produced empirically intractable parts of the Tree of Life. One such group is the arthropod subphylum Chelicerata, whose backbone phylogeny has remained unstable despite improvements in phylogenetic methods and genome-scale data sets. Pseudoscorpion placement is particularly variable across data sets and analytical frameworks, with this group either clustering with other long-branch orders or with Arachnopulmonata (scorpions and tetrapulmonates). To surmount long-branch attraction, we investigated the effect of taxonomic sampling via sequential deletion of basally branching pseudoscorpion superfamilies, as well as varying gene occupancy thresholds in supermatrices. We show that concatenated supermatrices and coalescent-based summary species tree approaches support a sister group relationship of pseudoscorpions and scorpions, when more of the basally branching taxa are sampled. Matrix completeness had demonstrably less influence on tree topology. As an external arbiter of phylogenetic placement, we leveraged the recent discovery of an ancient genome duplication in the common ancestor of Arachnopulmonata as a litmus test for competing hypotheses of pseudoscorpion relationships. We generated a high-quality developmental transcriptome and the first genome for pseudoscorpions to assess the incidence of arachnopulmonate-specific duplications (e.g., homeobox genes and miRNAs). Our results support the inclusion of pseudoscorpions in Arachnopulmonata (new definition), as the sister group of scorpions. Panscorpiones (new name) is proposed for the clade uniting Scorpiones and Pseudoscorpiones.

Systematic Detection of Large-Scale Multigene Horizontal Transfer in Prokaryotes

Wed, 10 Feb 2021 00:00:00 GMT

Abstract
Horizontal gene transfer (HGT) is central to prokaryotic evolution. However, little is known about the “scale” of individual HGT events. In this work, we introduce the first computational framework to help answer the following fundamental question: How often does more than one gene get horizontally transferred in a single HGT event? Our method, called HoMer, uses phylogenetic reconciliation to infer single-gene HGT events across a given set of species/strains, employs several techniques to account for inference error and uncertainty, combines that information with gene order information from extant genomes, and uses statistical analysis to identify candidate horizontal multigene transfers (HMGTs) in both extant and ancestral species/strains. HoMer is highly scalable and can be easily used to infer HMGTs across hundreds of genomes. We apply HoMer to a genome-scale data set of over 22,000 gene families from 103 Aeromonas genomes and identify a large number of plausible HMGTs of various scales at both small and large phylogenetic distances. Analysis of these HMGTs reveals interesting relationships between gene function, phylogenetic distance, and frequency of multigene transfer. Among other insights, we find that 1) the observed relative frequency of HMGT increases as divergence between genomes increases, 2) HMGTs often have conserved gene functions, and 3) rare genes are frequently acquired through HMGT. We also analyze in detail HMGTs involving the zonula occludens toxin and type III secretion systems. By enabling the systematic inference of HMGTs on a large scale, HoMer will facilitate a more accurate and more complete understanding of HGT and microbial evolution.

Is the Dinoflagellate Amoebophrya Really Missing an mtDNA?

Wed, 10 Feb 2021 00:00:00 GMT

Abstract
Mitochondrial DNA (mtDNA) is a universal hallmark of aerobic eukaryotes. That is why the recent suggestion by John et al. (2019. An aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome. Sci Adv. 5(4):eaav1110.) that the aerobic dinoflagellate Amoebophrya sp. strain AT5 (Syndiniales) lacks mtDNA was so remarkable. Here, by reanalyzing recently published genomic and transcriptomic data from three Amoebophrya strains, we provide evidence of a cryptic, highly reduced mtDNA in this clade. More work is needed before one can definitively say if Amoebophrya has or does not have an mtDNA, but for now, the data are pointing toward the existence of one. Ultimately, we urge caution when basing supposedly absent genomic features on single line evidences.

Gv1, a Zinc Finger Gene Controlling Endogenous MLV Expression

Tue, 09 Feb 2021 00:00:00 GMT

Abstract
The genomes of inbred mice harbor around 50 endogenous murine leukemia virus (MLV) loci, although the specific complement varies greatly between strains. The Gv1 locus is known to control the transcription of endogenous MLVs and to be the dominant determinant of cell-surface presentation of MLV envelope, the GIX antigen. Here, we identify a single Krüppel-associated box zinc finger protein (ZFP) gene, Zfp998, as Gv1 and show it to be necessary and sufficient to determine the GIX+ phenotype. By long-read sequencing of bacterial artificial chromosome clones from 129 mice, the prototypic GIX+ strain, we reveal the source of sufficiency and deficiency as splice-acceptor variations and highlight the varying origins of the chromosomal region encompassing Gv1. Zfp998 becomes the second identified ZFP gene responsible for epigenetic suppression of endogenous MLVs in mice and further highlights the prominent role of this gene family in control of endogenous retroviruses.

Size Variation of the Nonrecombining Region on the Mating-Type Chromosomes in the Fungal Podospora anserina Species Complex

Mon, 08 Feb 2021 00:00:00 GMT

Abstract
Sex chromosomes often carry large nonrecombining regions that can extend progressively over time, generating evolutionary strata of sequence divergence. However, some sex chromosomes display an incomplete suppression of recombination. Large genomic regions without recombination and evolutionary strata have also been documented around fungal mating-type loci, but have been studied in only a few fungal systems. In the model fungus Podospora anserina (Ascomycota, Sordariomycetes), the reference S strain lacks recombination across a 0.8-Mb region around the mating-type locus. The lack of recombination in this region ensures that nuclei of opposite mating types are packaged into a single ascospore (pseudohomothallic lifecycle). We found evidence for a lack of recombination around the mating-type locus in the genomes of ten P. anserina strains and six closely related pseudohomothallic Podospora species. Importantly, the size of the nonrecombining region differed between strains and species, as indicated by the heterozygosity levels around the mating-type locus and experimental selfing. The nonrecombining region is probably labile and polymorphic, differing in size and precise location within and between species, resulting in occasional, but infrequent, recombination at a given base pair. This view is also supported by the low divergence between mating types, and the lack of strong linkage disequilibrium, chromosomal rearrangements, transspecific polymorphism and genomic degeneration. We found a pattern suggestive of evolutionary strata in P. pseudocomata. The observed heterozygosity levels indicate low but nonnull outcrossing rates in nature in these pseudohomothallic fungi. This study adds to our understanding of mating-type chromosome evolution and its relationship to mating systems.

The Heterogeneous Landscape and Early Evolution of Pathogen-Associated CpG Dinucleotides in SARS-CoV-2

Mon, 08 Feb 2021 00:00:00 GMT

Abstract
COVID-19 can lead to acute respiratory syndrome, which can be due to dysregulated immune signaling. We analyze the distribution of CpG dinucleotides, a pathogen-associated molecular pattern, in the SARS-CoV-2 genome. We characterize CpG content by a CpG force that accounts for statistical constraints acting on the genome at the nucleotidic and amino acid levels. The CpG force, as the CpG content, is overall low compared with other pathogenic betacoronaviruses; however, it widely fluctuates along the genome, with a particularly low value, comparable with the circulating seasonal HKU1, in the spike coding region and a greater value, comparable with SARS and MERS, in the highly expressed nucleocapside coding region (N ORF), whose transcripts are relatively abundant in the cytoplasm of infected cells and present in the 3′UTRs of all subgenomic RNA. This dual nature of CpG content could confer to SARS-CoV-2 the ability to avoid triggering pattern recognition receptors upon entry, while eliciting a stronger response during replication. We then investigate the evolution of synonymous mutations since the outbreak of the COVID-19 pandemic, finding a signature of CpG loss in regions with a greater CpG force. Sequence motifs preceding the CpG-loss-associated loci in the N ORF match recently identified binding patterns of the zinc finger antiviral protein. Using a model of the viral gene evolution under human host pressure, we find that synonymous mutations seem driven in the SARS-CoV-2 genome, and particularly in the N ORF, by the viral codon bias, the transition–transversion bias, and the pressure to lower CpG content.

Reconstruction of Microbial Haplotypes by Integration of Statistical and Physical Linkage in Scaffolding

Sat, 06 Feb 2021 00:00:00 GMT

Abstract
DNA sequencing technologies provide unprecedented opportunities to analyze within-host evolution of microorganism populations. Often, within-host populations are analyzed via pooled sequencing of the population, which contains multiple individuals or “haplotypes.” However, current next-generation sequencing instruments, in conjunction with single-molecule barcoded linked-reads, cannot distinguish long haplotypes directly. Computational reconstruction of haplotypes from pooled sequencing has been attempted in virology, bacterial genomics, metagenomics, and human genetics, using algorithms based on either cross-host genetic sharing or within-host genomic reads. Here, we describe PoolHapX, a flexible computational approach that integrates information from both genetic sharing and genomic sequencing. We demonstrated that PoolHapX outperforms state-of-the-art tools tailored to specific organismal systems, and is robust to within-host evolution. Importantly, together with barcoded linked-reads, PoolHapX can infer whole-chromosome-scale haplotypes from 50 pools each containing 12 different haplotypes. By analyzing real data, we uncovered dynamic variations in the evolutionary processes of within-patient HIV populations previously unobserved in single position-based analysis.

The Genomes of Two Billfishes Provide Insights into the Evolution of Endothermy in Teleosts

Wed, 03 Feb 2021 00:00:00 GMT

Abstract
Endothermy is a typical convergent phenomenon which has evolved independently at least eight times in vertebrates, and is of significant advantage to organisms in extending their niches. However, how vertebrates other than mammals or birds, especially teleosts, achieve endothermy has not previously been fully understood. In this study, we sequenced the genomes of two billfishes (swordfish and sailfish), members of a representative lineage of endothermic teleosts. Convergent amino acid replacements were observed in proteins related to heat production and the visual system in two endothermic teleost lineages, billfishes and tunas. The billfish-specific genetic innovations were found to be associated with heat exchange, thermoregulation, and the specialized morphology, including elongated bill, enlarged dorsal fin in sailfish and loss of the pelvic fin in swordfish.

A Comprehensive Evolutionary Scenario of Cell Division and Associated Processes in the Firmicutes

Wed, 03 Feb 2021 00:00:00 GMT

Abstract
The cell cycle is a fundamental process that has been extensively studied in bacteria. However, many of its components and their interactions with machineries involved in other cellular processes are poorly understood. Furthermore, most knowledge relies on the study of a few models, but the real diversity of the cell division apparatus and its evolution are largely unknown. Here, we present a massive in-silico analysis of cell division and associated processes in around 1,000 genomes of the Firmicutes, a major bacterial phylum encompassing models (i.e. Bacillus subtilis, Streptococcus pneumoniae, and Staphylococcus aureus), as well as many important pathogens. We analyzed over 160 proteins by using an original approach combining phylogenetic reconciliation, phylogenetic profiles, and gene cluster survey. Our results reveal the presence of substantial differences among clades and pinpoints a number of evolutionary hotspots. In particular, the emergence of Bacilli coincides with an expansion of the gene repertoires involved in cell wall synthesis and remodeling. We also highlight major genomic rearrangements at the emergence of Streptococcaceae. We establish a functional network in Firmicutes that allows identifying new functional links inside one same process such as between FtsW (peptidoglycan polymerase) and a previously undescribed Penicilin-Binding Protein or between different processes, such as replication and cell wall synthesis. Finally, we identify new candidates involved in sporulation and cell wall synthesis. Our results provide a previously undescribed view on the diversity of the bacterial cell cycle, testable hypotheses for further experimental studies, and a methodological framework for the analysis of any other biological system.

The Evolution of euAPETALA2 Genes in Vascular Plants: From Plesiomorphic Roles in Sporangia to Acquired Functions in Ovules and Fruits

Tue, 02 Feb 2021 00:00:00 GMT

Abstract
The field of evolutionary developmental biology can help address how morphological novelties evolve, a key question in evolutionary biology. In Arabidopsis thaliana, APETALA2 (AP2) plays a role in the development of key plant innovations including seeds, flowers, and fruits. AP2 belongs to the AP2/ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR family which has members in all viridiplantae, making it one of the oldest and most diverse gene lineages. One key subclade, present across vascular plants is the euAPETALA2 (euAP2) clade, whose founding member is AP2. We reconstructed the evolution of the euAP2 gene lineage in vascular plants to better understand its impact on the morphological evolution of plants, identifying seven major duplication events. We also performed spatiotemporal expression analyses of euAP2/TOE3 genes focusing on less explored vascular plant lineages, including ferns, gymnosperms, early diverging angiosperms and early diverging eudicots. Altogether, our data suggest that euAP2 genes originally contributed to spore and sporangium development, and were subsequently recruited to ovule, fruit and floral organ development. Finally, euAP2 protein sequences are highly conserved; therefore, changes in the role of euAP2 homologs during development are most likely due to changes in regulatory regions.

The Mastigamoeba balamuthi Genome and the Nature of the Free-Living Ancestor of Entamoeba

Tue, 02 Feb 2021 00:00:00 GMT

Abstract
The transition of free-living organisms to parasitic organisms is a mysterious process that occurs in all major eukaryotic lineages. Parasites display seemingly unique features associated with their pathogenicity; however, it is important to distinguish ancestral preconditions to parasitism from truly new parasite-specific functions. Here, we sequenced the genome and transcriptome of anaerobic free-living Mastigamoeba balamuthi and performed phylogenomic analysis of four related members of the Archamoebae, including Entamoeba histolytica, an important intestinal pathogen of humans. We aimed to trace gene histories throughout the adaptation of the aerobic ancestor of Archamoebae to anaerobiosis and throughout the transition from a free-living to a parasitic lifestyle. These events were associated with massive gene losses that, in parasitic lineages, resulted in a reduction in structural features, complete losses of some metabolic pathways, and a reduction in metabolic complexity. By reconstructing the features of the common ancestor of Archamoebae, we estimated preconditions for the evolution of parasitism in this lineage. The ancestor could apparently form chitinous cysts, possessed proteolytic enzyme machinery, compartmentalized the sulfate activation pathway in mitochondrion-related organelles, and possessed the components for anaerobic energy metabolism. After the split of Entamoebidae, this lineage gained genes encoding surface membrane proteins that are involved in host–parasite interactions. In contrast, gene gains identified in the M. balamuthi lineage were predominantly associated with polysaccharide catabolic processes. A phylogenetic analysis of acquired genes suggested an essential role of lateral gene transfer in parasite evolution (Entamoeba) and in adaptation to anaerobic aquatic sediments (Mastigamoeba).

Were Ancestral Proteins Less Specific?

Tue, 02 Feb 2021 00:00:00 GMT

Abstract
Some have hypothesized that ancestral proteins were, on average, less specific than their descendants. If true, this would provide a universal axis along which to organize protein evolution and suggests that reconstructed ancestral proteins may be uniquely powerful tools for protein engineering. Ancestral sequence reconstruction studies are one line of evidence used to support this hypothesis. Previously, we performed such a study, investigating the evolution of peptide-binding specificity for the paralogs S100A5 and S100A6. The modern proteins appeared more specific than their last common ancestor (ancA5/A6), as each paralog bound a subset of the peptides bound by ancA5/A6. In this study, we revisit this transition, using quantitative phage display to measure the interactions of 30,533 random peptides with human S100A5, S100A6, and ancA5/A6. This unbiased screen reveals a different picture. While S100A5 and S100A6 do indeed bind to a subset of the peptides recognized by ancA5/A6, they also acquired new peptide partners outside of the set recognized by ancA5/A6. Our previous work showed that ancA5/A6 had lower specificity than its descendants when measured against biological targets; our new work shows that ancA5/A6 has similar specificity to the modern proteins when measured against a random set of peptide targets. This demonstrates that altered biological specificity does not necessarily indicate altered intrinsic specificity, and sounds a cautionary note for using ancestral reconstruction studies with biological targets as a means to infer global evolutionary trends in specificity.

Diversification of CD1 Molecules Shapes Lipid Antigen Selectivity

Tue, 02 Feb 2021 00:00:00 GMT

Abstract
Molecular studies of host–pathogen evolution have largely focused on the consequences of variation at protein–protein interaction surfaces. The potential for other microbe-associated macromolecules to promote arms race dynamics with host factors remains unclear. The cluster of differentiation 1 (CD1) family of vertebrate cell surface receptors plays a crucial role in adaptive immunity through binding and presentation of lipid antigens to T-cells. Although CD1 proteins present a variety of endogenous and microbial lipids to various T-cell types, they are less diverse within vertebrate populations than the related major histocompatibility complex (MHC) molecules. We discovered that CD1 genes exhibit a high level of divergence between simian primate species, altering predicted lipid-binding properties and T-cell receptor interactions. These findings suggest that lipid–protein conflicts have shaped CD1 genetic variation during primate evolution. Consistent with this hypothesis, multiple primate CD1 family proteins exhibit signatures of repeated positive selection at surfaces impacting antigen presentation, binding pocket morphology, and T-cell receptor accessibility. Using a molecular modeling approach, we observe that interspecies variation as well as single mutations at rapidly-evolving sites in CD1a drastically alter predicted lipid binding and structural features of the T-cell recognition surface. We further show that alterations in both endogenous and microbial lipid-binding affinities influence the ability of CD1a to undergo antigen swapping required for T-cell activation. Together these findings establish lipid–protein interactions as a critical force of host–pathogen conflict and inform potential strategies for lipid-based vaccine development.

Genome-Scale Profiling Reveals Noncoding Loci Carry Higher Proportions of Concordant Data

Tue, 02 Feb 2021 00:00:00 GMT

Abstract
Many evolutionary relationships remain controversial despite whole-genome sequencing data. These controversies arise, in part, due to challenges associated with accurately modeling the complex phylogenetic signal coming from genomic regions experiencing distinct evolutionary forces. Here, we examine how different regions of the genome support or contradict well-established relationships among three mammal groups using millions of orthologous parsimony-informative biallelic sites (PIBS) distributed across primate, rodent, and Pecora genomes. We compared PIBS concordance percentages among locus types (e.g. coding sequences (CDS), introns, intergenic regions), and contrasted PIBS utility over evolutionary timescales. Sites derived from noncoding sequences provided more data and proportionally more concordant sites compared with those from CDS in all clades. CDS PIBS were also predominant drivers of tree incongruence in two cases of topological conflict. PIBS derived from most locus types provided surprisingly consistent support for splitting events spread across the timescales we examined, although we find evidence that CDS and intronic PIBS may, respectively and to a limited degree, inform disproportionately about older and younger splits. In this era of accessible wholegenome sequence data, these results:1) suggest benefits to more intentionally focusing on noncoding loci as robust data for tree inference and 2) reinforce the importance of accurate modeling, especially when using CDS data.

Genomic Insights into the Origin and Evolution of Molluscan Red-Bloodedness in the Blood Clam Tegillarca granosa

Tue, 02 Feb 2021 00:00:00 GMT

Abstract
Blood clams differ from their molluscan kins by exhibiting a unique red-blood (RB) phenotype; however, the genetic basis and biochemical machinery subserving this evolutionary innovation remain unclear. As a fundamental step toward resolving this mystery, we presented the first chromosome-level genome and comprehensive transcriptomes of the blood clam Tegillarca granosa for an integrated genomic, evolutionary, and functional analyses of clam RB phenotype. We identified blood clam-specific and expanded gene families, as well as gene pathways that are of RB relevant. Clam-specific RB-related hemoglobins (Hbs) showed close phylogenetic relationships with myoglobins (Mbs) of blood clam and other molluscs without the RB phenotype, indicating that clam-specific Hbs were likely evolutionarily derived from the Mb lineage. Strikingly, similar to vertebrate Hbs, blood clam Hbs were present in a form of gene cluster. Despite the convergent evolution of Hb clusters in blood clam and vertebrates, their Hb clusters may have originated from a single ancestral Mb-like gene as evidenced by gene phylogeny and synteny analysis. A full suite of enzyme-encoding genes for heme synthesis was identified in blood clam, with prominent expression in hemolymph and resembling those in vertebrates, suggesting a convergence of both RB-related Hb and heme functions in vertebrates and blood clam. RNA interference experiments confirmed the functional roles of Hbs and key enzyme of heme synthesis in the maintenance of clam RB phenotype. The high-quality genome assembly and comprehensive transcriptomes presented herein serve new genomic resources for the super-diverse phylum Mollusca, and provide deep insights into the origin and evolution of invertebrate RB.

Analysis of Polycerate Mutants Reveals the Evolutionary Co-option of HOXD1 for Horn Patterning in Bovidae

Tue, 02 Feb 2021 00:00:00 GMT

Abstract
In the course of evolution, pecorans (i.e., higher ruminants) developed a remarkable diversity of osseous cranial appendages, collectively referred to as “headgear,” which likely share the same origin and genetic basis. However, the nature and function of the genetic determinants underlying their number and position remain elusive. Jacob and other rare populations of sheep and goats are characterized by polyceraty, the presence of more than two horns. Here, we characterize distinct POLYCERATE alleles in each species, both associated with defective HOXD1 function. We show that haploinsufficiency at this locus results in the splitting of horn bud primordia, likely following the abnormal extension of an initial morphogenetic field. These results highlight the key role played by this gene in headgear patterning and illustrate the evolutionary co-option of a gene involved in the early development of bilateria to properly fix the position and number of these distinctive organs of Bovidae.

Unraveling the Complex Hybrid Ancestry and Domestication History of Cultivated Strawberry

Thu, 28 Jan 2021 00:00:00 GMT

Abstract
Cultivated strawberry (Fragaria × ananassa) is one of our youngest domesticates, originating in early eighteenth-century Europe from spontaneous hybrids between wild allo-octoploid species (Fragaria chiloensis and Fragaria virginiana). The improvement of horticultural traits by 300 years of breeding has enabled the global expansion of strawberry production. Here, we describe the genomic history of strawberry domestication from the earliest hybrids to modern cultivars. We observed a significant increase in heterozygosity among interspecific hybrids and a decrease in heterozygosity among domesticated descendants of those hybrids. Selective sweeps were found across the genome in early and modern phases of domestication—59–76% of the selectively swept genes originated in the three less dominant ancestral subgenomes. Contrary to the tenet that genetic diversity is limited in cultivated strawberry, we found that the octoploid species harbor massive allelic diversity and that F. × ananassa harbors as much allelic diversity as either wild founder. We identified 41.8 M subgenome-specific DNA variants among resequenced wild and domesticated individuals. Strikingly, 98% of common alleles and 73% of total alleles were shared between wild and domesticated populations. Moreover, genome-wide estimates of nucleotide diversity were virtually identical in F. chiloensis,F. virginiana, and F. × ananassa (π = 0.0059–0.0060). We found, however, that nucleotide diversity and heterozygosity were significantly lower in modern F. × ananassa populations that have experienced significant genetic gains and have produced numerous agriculturally important cultivars.

Bridging Themes: Short Protein Segments Found in Different Architectures

Wed, 27 Jan 2021 00:00:00 GMT

Abstract
The vast majority of theoretically possible polypeptide chains do not fold, let alone confer function. Hence, protein evolution from preexisting building blocks has clear potential advantages over ab initio emergence from random sequences. In support of this view, sequence similarities between different proteins is generally indicative of common ancestry, and we collectively refer to such homologous sequences as “themes.” At the domain level, sequence homology is routinely detected. However, short themes which are segments, or fragments of intact domains, are particularly interesting because they may provide hints about the emergence of domains, as opposed to divergence of preexisting domains, or their mixing-and-matching to form multi-domain proteins. Here we identified 525 representative short themes, comprising 20–80 residues that are unexpectedly shared between domains considered to have emerged independently. Among these “bridging themes” are ones shared between the most ancient domains, for example, Rossmann, P-loop NTPase, TIM-barrel, flavodoxin, and ferredoxin-like. We elaborate on several particularly interesting cases, where the bridging themes mediate ligand binding. Ligand binding may have contributed to the stability and the plasticity of these building blocks, and to their ability to invade preexisting domains or serve as starting points for completely new domains.

Pneumococcal Colonization and Virulence Factors Identified Via Experimental Evolution in Infection Models

Wed, 27 Jan 2021 00:00:00 GMT

Abstract
Streptococcus pneumoniae is a commensal of the human nasopharynx and a major cause of respiratory and invasive disease. We examined adaptation and evolution of pneumococcus, within nasopharynx and lungs, in an experimental system where the selective pressures associated with transmission were removed. This was achieved by serial passage of pneumococci, separately, in mouse models of nasopharyngeal carriage or pneumonia. Passaged pneumococci became more effective colonizers of the respiratory tract and we observed several examples of potential parallel evolution. The cell wall-modifying glycosyltransferase LafA was under strong selection during lung passage, whereas the surface expressed pneumococcal vaccine antigen gene pvaA and the glycerol-3-phosphate dehydrogenase gene gpsA were frequent targets of mutation in nasopharynx-passaged pneumococci. These mutations were not identified in pneumococci that were separately evolved by serial passage on laboratory agar. We focused on gpsA, in which the same single nucleotide polymorphism arose in two independently evolved nasopharynx-passaged lineages. We describe a new role for this gene in nasopharyngeal carriage and show that the identified single nucleotide change confers resistance to oxidative stress and enhanced nasopharyngeal colonization potential. We demonstrate that polymorphisms in gpsA arise and are retained during human colonization. These findings highlight how within-host environmental conditions can determine trajectories of bacterial evolution. Relative invasiveness or attack rate of pneumococcal lineages may be defined by genes that make niche-specific contributions to bacterial fitness. Experimental evolution in animal infection models is a powerful tool to investigate the relative roles played by pathogen virulence and colonization factors within different host niches.

GBE | Most Read

Genome Biology & Evolution

Highlight: The Evolutionary Fates of Supergenes Unmasked

Tue, 04 May 2021 00:00:00 GMT

Although the term “supergene” may bring to mind the genetic hocus-pocus of Peter Parker’s transformation into Spiderman, supergenes are actually fairly common phenomena in the realm of biology. A supergene refers to a genomic region containing multiple genes or genetic elements that are tightly linked, allowing genetic variants across the region to be co-inherited. Supergenes may arise when there is a clear benefit to inheriting specific combinations of biological traits together. Perhaps the most well-known examples of supergenes are sex chromosomes, which allow traits that are beneficial to the reproductive success of one sex to be co-inherited. In humans, this explains the prevalence of male-specific genes on the Y chromosome. Although the concept of supergenes arose nearly a century ago, until recently, the study of their origin, evolution, and eventual fate was largely theoretical. Now, however, thanks to advances in genomic sequencing and computational biology, scientists can put those theories to the test with real-world data. In a recent review published in Genome Biology and Evolution titled “The genomic architecture and evolutionary fates of supergenes,” Associate Professor Tanja Slotte and her colleagues at Stockholm University in Sweden discuss new findings in the field of supergene evolution and reveal how the genomic architecture of a supergene is inextricably tied to its evolutionary fate (Gutiérrez-Valencia et al. 2021).

Large-Scale Annotation and Evolution Analysis of MiRNA in Insects

Mon, 26 Apr 2021 00:00:00 GMT

Abstract
Insects are among the most diverse and successful groups of animals and exhibit great morphological diversity and complexity. The innovation of wings and metamorphosis are some examples of the fascinating biological evolution of insects. Most microRNAs (miRNAs) contribute to canalization by conferring robustness to gene networks and thus increase the heritability of important phenotypes. Though previous studies have demonstrated how miRNAs regulate important phenotypes, little is still known about miRNA evolution in insects. Here, we used both small RNA-seq data and homology searching methods to annotate the miRNA repertoires of 152 arthropod species, including 135 insects and 17 noninsect arthropods. We identified 16,212 miRNA genes, and classified them into highly conserved (62), insect-conserved (90), and lineage-specific (354) miRNA families. The phylogenetic relationship of miRNA binary presence/absence dynamics implies that homoplastic loss of conserved miRNA families tends to occur in far-related morphologically simplified taxa, including scale insects (Coccoidea) and twisted-wing insects (Strepsiptera), leading to inconsistent phylogenetic tree reconstruction. The common ancestor of Insecta shares 62 conserved miRNA families, of which five were rapidly gained in the early winged-insects (Pterygota). We also detected extensive miRNA losses in Paraneoptera that are correlated with morphological reduction, and miRNA gains in early Endopterygota around the time holometabolous metamorphosis appeared. This was followed by abundant miRNA gains in Hymenoptera and Lepidoptera. In summary, we provide a comprehensive data set and a detailed evolutionary analysis of miRNAs in insects. These data will be important for future studies on miRNA functions associated with insect morphological innovation and trait biodiversity.

Mutation Rates and Selection on Synonymous Mutations in SARS-CoV-2

Sat, 24 Apr 2021 00:00:00 GMT

Abstract
The COVID-19 pandemic has seen an unprecedented response from the sequencing community. Leveraging the sequence data from more than 140,000 SARS-CoV-2 genomes, we study mutation rates and selective pressures affecting the virus. Understanding the processes and effects of mutation and selection has profound implications for the study of viral evolution, for vaccine design, and for the tracking of viral spread. We highlight and address some common genome sequence analysis pitfalls that can lead to inaccurate inference of mutation rates and selection, such as ignoring skews in the genetic code, not accounting for recurrent mutations, and assuming evolutionary equilibrium. We find that two particular mutation rates, G →U and C →U, are similarly elevated and considerably higher than all other mutation rates, causing the majority of mutations in the SARS-CoV-2 genome, and are possibly the result of APOBEC and ROS activity. These mutations also tend to occur many times at the same genome positions along the global SARS-CoV-2 phylogeny (i.e., they are very homoplasic). We observe an effect of genomic context on mutation rates, but the effect of the context is overall limited. Although previous studies have suggested selection acting to decrease U content at synonymous sites, we bring forward evidence suggesting the opposite.

Genomic Signature of Shifts in Selection and Alkaline Adaptation in Highland Fish

Fri, 23 Apr 2021 00:00:00 GMT

Abstract
Understanding how organisms adapt to aquatic life at high altitude is fundamental in evolutionary biology. This objective has been addressed primarily related to hypoxia adaptation by recent comparative studies, whereas highland fish has also long suffered extreme alkaline environment, insight into the genomic basis of alkaline adaptation has rarely been provided. Here, we compared the genomes or transcriptomes of 15 fish species, including two alkaline tolerant highland fish species and their six alkaline intolerant relatives, three alkaline tolerant lowland fish species, and four alkaline intolerant species. We found putatively consistent patterns of molecular evolution in alkaline tolerant species in a large number of shared orthologs within highland and lowland fish taxa. Remarkably, we identified consistent signatures of accelerated evolution and positive selection in a set of shared genes associated with ion transport, apoptosis, immune response, and energy metabolisms in alkaline tolerant species within both highland and lowland fish taxa. This is one of the first comparative studies that began to elucidate the consistent genomic signature of alkaline adaptation shared by highland and lowland fish. This finding also highlights the adaptive molecular evolution changes that support fish adapting to extreme environments at high altitude.

Divergent Gene Expression Following Duplication of Meiotic Genes in the Stick Insect Clitarchus hookeri

Thu, 22 Apr 2021 00:00:00 GMT

Abstract
Some animal groups, such as stick insects (Phasmatodea), have repeatedly evolved alternative reproductive strategies, including parthenogenesis. Genomic studies have found modification of the genes underlying meiosis exists in some of these animals. Here we examine the evolution of copy number, evolutionary rate, and gene expression in candidate meiotic genes of the New Zealand geographic parthenogenetic stick insect Clitarchus hookeri. We characterized 101 genes from a de novo transcriptome assembly from female and male gonads that have homology with meiotic genes from other arthropods. For each gene we determined copy number, the pattern of gene duplication relative to other arthropod orthologs, and the potential for meiosis-specific expression. There are five genes duplicated in C. hookeri, including one also duplicated in the stick insect Timema cristinae, that are not or are uncommonly duplicated in other arthropods. These included two sister chromatid cohesion associated genes (SA2 and SCC2), a recombination gene (HOP1), an RNA-silencing gene (AGO2) and a cell-cycle regulation gene (WEE1). Interestingly, WEE1 and SA2 are also duplicated in the cyclical parthenogenetic aphid Acyrthosiphon pisum and Daphnia duplex, respectively, indicating possible roles in the evolution of reproductive mode. Three of these genes (SA2, SCC2, and WEE1) have one copy displaying gonad-specific expression. All genes, with the exception of WEE1, have significantly different nonsynonymous/synonymous ratios between the gene duplicates, indicative of a shift in evolutionary constraints following duplication. These results suggest that stick insects may have evolved genes with novel functions in gamete production by gene duplication.

The Transposable Element Environment of Human Genes Differs According to Their Duplication Status and Essentiality

Thu, 15 Apr 2021 00:00:00 GMT

Abstract
Transposable elements (TEs) are major components of eukaryotic genomes and represent approximately 45% of the human genome. TEs can be important sources of novelty in genomes and there is increasing evidence that TEs contribute to the evolution of gene regulation in mammals. Gene duplication is an evolutionary mechanism that also provides new genetic material and opportunities to acquire new functions. To investigate how duplicated genes are maintained in genomes, here, we explored the TE environment of duplicated and singleton genes. We found that singleton genes have more short-interspersed nuclear elements and DNA transposons in their vicinity than duplicated genes, whereas long-interspersed nuclear elements and long-terminal repeat retrotransposons have accumulated more near duplicated genes. We also discovered that this result is highly associated with the degree of essentiality of the genes with an unexpected accumulation of short-interspersed nuclear elements and DNA transposons around the more-essential genes. Our results underline the importance of taking into account the TE environment of genes to better understand how duplicated genes are maintained in genomes.

Population Genomics of the Maize Pathogen Ustilago maydis: Demographic History and Role of Virulence Clusters in Adaptation

Sat, 10 Apr 2021 00:00:00 GMT

Abstract
The tight interaction between pathogens and their hosts results in reciprocal selective forces that impact the genetic diversity of the interacting species. The footprints of this selection differ between pathosystems because of distinct life-history traits, demographic histories, or genome architectures. Here, we studied the genome-wide patterns of genetic diversity of 22 isolates of the causative agent of the corn smut disease, Ustilago maydis, originating from five locations in Mexico, the presumed center of origin of this species. In this species, many genes encoding secreted effector proteins reside in so-called virulence clusters in the genome, an arrangement that is so far not found in other filamentous plant pathogens. Using a combination of population genomic statistical analyses, we assessed the geographical, historical, and genome-wide variation of genetic diversity in this fungal pathogen.We report evidence of two partially admixed subpopulations that are only loosely associated with geographic origin. Using the multiple sequentially Markov coalescent model, we inferred the demographic history of the two pathogen subpopulations over the last 0.5 Myr. We show that both populations experienced a recent strong bottleneck starting around 10,000 years ago, coinciding with the assumed time of maize domestication. Although the genome average genetic diversity is low compared with other fungal pathogens, we estimated that the rate of nonsynonymous adaptive substitutions is three times higher in genes located within virulence clusters compared with nonclustered genes, including nonclustered effector genes. These results highlight the role that these singular genomic regions play in the evolution of this pathogen.

Genomic Variation and Recent Population Histories of Spotted (Strix occidentalis) and Barred (Strix varia) Owls

Thu, 25 Mar 2021 00:00:00 GMT

Abstract
Spotted owls (SOs, Strix occidentalis) are a flagship species inhabiting old-growth forests in western North America. In recent decades, their populations have declined due to ongoing reductions in suitable habitat caused by logging, wildfires, and competition with the congeneric barred owl (BO, Strix varia). The northern spotted owl (S. o. caurina) has been listed as “threatened” under the Endangered Species Act since 1990. Here, we use an updated SO genome assembly along with 51 high-coverage whole-genome sequences to examine population structure, hybridization, and recent changes in population size in SO and BO. We found that potential hybrids identified from intermediate plumage morphology were a mixture of pure BO, F1 hybrids, and F1 × BO backcrosses. Also, although SO underwent a population bottleneck around the time of the Pleistocene–Holocene transition, their population sizes rebounded and show no evidence of any historical (i.e., 100–10,000 years ago) population decline. This suggests that the current decrease in SO abundance is due to events in the past century. Finally, we estimate that western and eastern BOs have been genetically separated for thousands of years, instead of the previously assumed recent (i.e., <150 years) divergence. Although this result is surprising, it is unclear where the ancestors of western BO lived after the separation. In particular, although BO may have colonized western North America much earlier than the first recorded observations, it is also possible that the estimated divergence time reflects unsampled BO population structure within central or eastern North America.

Comparative Analysis of Annotation Pipelines Using the First Japanese White-Eye (Zosterops japonicus) Genome

Wed, 24 Mar 2021 00:00:00 GMT

Abstract
Introduced into Hawaii in the early 1900s, the Japanese white-eye or warbling white-eye (Zosterops japonicus) is now the most abundant land bird in the archipelago. Here, we present the first Z. japonicus genome, sequenced from an individual in its invasive range. This genome provides an important resource for future studies in invasion genomics. We annotated the genome using two workflows—standalone AUGUSTUS and BRAKER2. We found that AUGUSTUS was more conservative with gene predictions when compared with BRAKER2. The final number of annotated gene models was similar between the two workflows, but standalone AUGUSTUS had over 70% of gene predictions with Blast2GO annotations versus under 30% using BRAKER2. Additionally, we tested whether using RNA-seq data from 47 samples had a significant impact on annotation quality when compared with data from a single sample, as generating RNA-seq data for genome annotation can be expensive and requires well preserved tissue. We found that more data did not significantly change the number of annotated genes using AUGUSTUS but using BRAKER2 the number increased substantially. The results presented here will aid researchers in annotating draft genomes of nonmodel species as well as those studying invasion success.

Genetic Drift Dominates Genome-Wide Regulatory Evolution Following an Ancient Whole-Genome Duplication in Atlantic Salmon

Mon, 22 Mar 2021 00:00:00 GMT

Abstract
Whole-genome duplications (WGD) have been considered as springboards that potentiate lineage diversification through increasing functional redundancy. Divergence in gene regulatory elements is a central mechanism for evolutionary diversification, yet the patterns and processes governing regulatory divergence following events that lead to massive functional redundancy, such as WGD, remain largely unknown. We studied the patterns of divergence and strength of natural selection on regulatory elements in the Atlantic salmon (Salmo salar) genome, which has undergone WGD 100–80 Ma. Using ChIPmentation, we first show that H3K27ac, a histone modification typical to enhancers and promoters, is associated with genic regions, tissue-specific transcription factor binding motifs, and with gene transcription levels in immature testes. Divergence in transcription between duplicated genes from WGD (ohnologs) correlated with difference in the number of proximal regulatory elements, but not with promoter elements, suggesting that functional divergence between ohnologs after WGD is mainly driven by enhancers. By comparing H3K27ac regions between duplicated genome blocks, we further show that a longer polyploid state post-WGD has constrained regulatory divergence. Patterns of genetic diversity across natural populations inferred from resequencing indicate that recent evolutionary pressures on H3K27ac regions are dominated by largely neutral evolution. In sum, our results suggest that post-WGD functional redundancy in regulatory elements continues to have an impact on the evolution of the salmon genome, promoting largely neutral evolution of regulatory elements despite their association with transcription levels. These results highlight a case where genome-wide regulatory evolution following an ancient WGD is dominated by genetic drift.

Chromosome Level Assembly of the Comma Butterfly (Polygonia c-album)

Mon, 22 Mar 2021 00:00:00 GMT

Abstract
The comma butterfly (Polygonia c-album, Nymphalidae, Lepidoptera) is a model insect species, most notably in the study of phenotypic plasticity and plant-insect coevolutionary interactions. In order to facilitate the integration of genomic tools with a diverse body of ecological and evolutionary research, we assembled the genome of a Swedish comma using 10X sequencing, scaffolding with matepair data, genome polishing, and assignment to linkage groups using a high-density linkage map. The resulting genome is 373 Mb in size, with a scaffold N50 of 11.7 Mb and contig N50 of 11,2Mb. The genome contained 90.1% of single-copy Lepidopteran orthologs in a BUSCO analysis of 5,286 genes. A total of 21,004 gene-models were annotated on the genome using RNA-Seq data from larval and adult tissue in combination with proteins from the Arthropoda database, resulting in a high-quality annotation for which functional annotations were generated. We further documented the quality of the chromosomal assembly via synteny assessment with Melitaea cinxia. The resulting annotated, chromosome-level genome will provide an important resource for investigating coevolutionary dynamics and comparative analyses in Lepidoptera.

Resolving the Early Divergence Pattern of Teleost Fish Using Genome-Scale Data

Fri, 19 Mar 2021 00:00:00 GMT

Abstract
Regarding the phylogenetic relationship of the three primary groups of teleost fishes, Osteoglossomorpha (bonytongues and others), Elopomorpha (eels and relatives), Clupeocephala (the remaining teleost fish), early morphological studies hypothesized the first divergence of Osteoglossomorpha, whereas the recent prevailing view is the first divergence of Elopomorpha. Molecular studies supported all the possible relationships of the three primary groups. This study analyzed genome-scale data from four previous studies: 1) 412 genes from 12 species, 2) 772 genes from 15 species, 3) 1,062 genes from 30 species, and 4) 491 UCE loci from 27 species. The effects of the species, loci, and models used on the constructed tree topologies were investigated. In the analyses of the data sets (1)–(3), although the first divergence of Clupeocephala that left the other two groups in a sister relationship was supported by concatenated sequences and gene trees of all the species and genes, the first divergence of Elopomorpha among the three groups was supported using species and/or genes with low divergence of sequence and amino-acid frequencies. This result corresponded to that of the UCE data set (4), whose sequence divergence was low, which supported the first divergence of Elopomorpha with high statistical significance. The increase in accuracy of the phylogenetic construction by using species and genes with low sequence divergence was predicted by a phylogenetic informativeness approach and confirmed by computer simulation. These results supported that Elopomorpha was the first basal group of teleost fish to have diverged, consistent with the prevailing view of recent morphological studies.

The Genomic Architecture and Evolutionary Fates of Supergenes

Fri, 19 Mar 2021 00:00:00 GMT

Abstract
Supergenes are genomic regions containing sets of tightly linked loci that control multi-trait phenotypic polymorphisms under balancing selection. Recent advances in genomics have uncovered significant variation in both the genomic architecture as well as the mode of origin of supergenes across diverse organismal systems. Although the role of genomic architecture for the origin of supergenes has been much discussed, differences in the genomic architecture also subsequently affect the evolutionary trajectory of supergenes and the rate of degeneration of supergene haplotypes. In this review, we synthesize recent genomic work and historical models of supergene evolution, highlighting how the genomic architecture of supergenes affects their evolutionary fate. We discuss how recent findings on classic supergenes involved in governing ant colony social form, mimicry in butterflies, and heterostyly in flowering plants relate to theoretical expectations. Furthermore, we use forward simulations to demonstrate that differences in genomic architecture affect the degeneration of supergenes. Finally, we discuss implications of the evolution of supergene haplotypes for the long-term fate of balanced polymorphisms governed by supergenes.

Evolutionary Contribution of Duplicated Genes to Genome Evolution in the Ginseng Species Complex

Sat, 13 Mar 2021 00:00:00 GMT

Abstract
Genes duplicated by whole genome duplication (WGD) and small-scale duplication (SSD) have played important roles in adaptive evolution of all flowering plants. However, it still remains underinvestigated how the distinct models of duplication events and their contending evolutionary patterns have shaped the genome and epigenomes of extant plant species. In this study, we investigated the contribution of the WGD- and SSD-derived duplicate genes to the genome evolution of one diploid and three closely related allotetraploid Panax species based on genome, methylome, and proteome data sets. Our genome-wide comparative analyses revealed that although the ginseng species complex was recently diverged, they have evolved distinct overall patterns of nucleotide variation, cytosine methylation, and protein-level expression. In particular, genetic and epigenetic asymmetries observed in the recent WGD-derived genes are largely consistent across the ginseng species complex. In addition, our results revealed that gene duplicates generated by ancient WGD and SSD mechanisms exhibited distinct evolutionary patterns. We found the ancient WGD-derived genes (i.e., ancient collinear gene) are genetically more conserved and hypomethylated at the cytosine sites. In contrast, some of the SSD-derived genes (i.e., dispersal duplicated gene) showed hypermethylation and high variance in nucleotide variation pattern. Functional enrichment analyses of the duplicated genes indicated that adaptation-related traits (i.e., photosynthesis) created during the distant ancient WGDs are further strengthened by both the more recent WGD and SSD. Together, our findings suggest that different types of duplicated genes may have played distinct but relaying evolutionary roles in the polyploidization and speciation processes in the ginseng species complex.

Large Genetic Diversity and Strong Positive Selection in F-Box and GPCR Genes among the Wild Isolates of Caenorhabditis elegans

Tue, 09 Mar 2021 00:00:00 GMT

Abstract
The F-box and chemosensory GPCR (csGPCR) gene families are greatly expanded in nematodes, including the model organism Caenorhabditis elegans, compared with insects and vertebrates. However, the intraspecific evolution of these two gene families in nematodes remain unexamined. In this study, we analyzed the genomic sequences of 330 recently sequenced wild isolates of C. elegans using a range of population genetics approaches. We found that F-box and csGPCR genes, especially the Srw family csGPCRs, showed much more diversity than other gene families. Population structure analysis and phylogenetic analysis divided the wild strains into eight non-Hawaiian and three Hawaiian subpopulations. Some Hawaiian strains appeared to be more ancestral than all other strains. F-box and csGPCR genes maintained a great amount of the ancestral variants in the Hawaiian subpopulation and their divergence among the non-Hawaiian subpopulations contributed significantly to population structure. F-box genes are mostly located at the chromosomal arms and high recombination rate correlates with their large polymorphism. Moreover, using both neutrality tests and extended haplotype homozygosity analysis, we identified signatures of strong positive selection in the F-box and csGPCR genes among the wild isolates, especially in the non-Hawaiian population. Accumulation of high-frequency-derived alleles in these genes was found in non-Hawaiian population, leading to divergence from the ancestral genotype. In summary, we found that F-box and csGPCR genes harbor a large pool of natural variants, which may be subjected to positive selection. These variants are mostly mapped to the substrate-recognition domains of F-box proteins and the extracellular and intracellular regions of csGPCRs, possibly resulting in advantages during adaptation by affecting protein degradation and the sensing of environmental cues, respectively.