Featured News

Newly elected SMBE officers and councilors

Congratulations to President-elect Dr. Harmit Singh Malik, Secretary-elect Dr. Nadia D. Singh and newly elected councilors Dr. Sarah Schaack and Dr. Stephen I. Wright!

Continue Reading →

  • Friday, September 13, 2019
  • Comments (0)

SMBE 2020 - Call for Symposia

We're delighted to announce that the Society for Molecular Biology & Evolution will be accepting proposals for symposium topics for the 2020 Annual Meeting from 9 September 2019. SMBE 2020 is taking place in Québec City, Canada, from 28th June to 2nd July 2020.

Please visit the SMBE 2020 website - smbe2020.org/call-for-symposia – to access information and the submission portal.

Continue Reading →

  • Monday, September 09, 2019
  • Comments (0)

Save the Date - SMBE 2020

It is our great pleasure to invite you to the SMBE 2020 Meeting that will take place in beautiful Québec City, Canada. The meeting will be held at the Convention Centre.

Québec City is a UNESCO World Heritage Site as the only walled city in North America whose fortifications are still intact. It offers legendary hospitality, joie de vivre, an abundance of historical, tourist, and cultural attractions, and of course Old Québec, the jewel in the city’s crown. Must see attractions like the Plains of Abraham, Old Québec, and the Petit Champlain district, as well as numerous restaurants, hotels, and museums are all within walking distance from the Convention Centre. Québec City stands out for the variety of restaurants, the quality of its local products, and the creative talent of its chefs. The region has all the advantages and amenities of a big city, set against a spectacular natural backdrop. Bienvenue à Québec!

Québec City region is also recognized for its expertise in the life science sector, being home to world-renowned research centers, several industry leaders and a multitude of innovative companies.

More information may be found on this downloadable PDF or by visiting SMBE2020.org.

Continue Reading →

  • Wednesday, July 24, 2019
  • Comments (0)

Congratulations to the winners of the SMBE 2019 Best Student Paper Awards for papers published in 2018 in MBE and GBE

These awards provide recognition for outstanding student papers in the two SMBE journals, Molecular Biology & Evolution and Genome Biology & Evolution, in the calendar year prior to the meeting are eligible for nomination.

MBE winner: Jean Cury

for the paper "Host Range and Genetic Plasticity Explain the Coexistence of Integrative and Extrachromosomal Mobile Genetic Elements" published in 2018 in MBE https://academic.oup.com/mbe/article/35/11/2850/5174134

"I am interested in the evolution of bacterial genomes. I did my PhD in Eduardo Rocha's lab working on the evolution of conjugative elements and integrons. I am currently doing a post-doc with Flora Jay, where we develop deep learning methods for bacterial population genomics." 

Interconversion between integrative (ICE) and extrachromosomal (plasmid) elements allows access to the higher genetic plasticity of plasmids and the broader host range of ICEs.


Małgorzata A Gazda

"Signatures of Selection on Standing Genetic Variation Underlie Athletic and Navigational Performance in Racing Pigeons" (Małgorzata A Gazda, Pedro Andrade, Sandra Afonso, Jolita Dilytė, John P Archer et al. Molecular Biology and Evolution, Volume 35, Issue 5, 1 May 2018, Pages 1176–1189, https://doi.org/10.1093/molbev/msy030. Published: 13 March 2018 https://academic.oup.com/mbe/article/35/5/1176/4911169

Áine N O’Toole

"Faster Evolving Primate Genes Are More Likely To Duplicate" (Áine N O’Toole, Laurence D Hurst, Aoife McLysaght) Molecular Biology and Evolution, Volume 35, Issue 1, 1 January 2018, Pages 107–. 118, https://doi.org/10.1093/molbev/msx270. Published: 07 November 2017 https://academic.oup.com/mbe/article/35/1/107/4554431

GBE winner:
Bárbara D Bitarello

for the paper "Signatures of Long-Term Balancing Selection in Human Genomes" published in 2018 in GBE. https://academic.oup.com/gbe/article/10/3/939/4938688

"I am passionate about understanding human evolution, and this work shed light into how complex our evolution has been. It is great to see how much interest balancing selection has been receiving lately. I was very lucky to have the opportunity to work on this topic under the supervision of two amazing mentors,

Continue Reading →

  • Tuesday, April 23, 2019
  • Comments (0)

Congratulations to the winners of the SMBE 2019 Faculty Awards

2019 SMBE Allan Wilson Junior Award for Independent Research Winner: Claudia Bank

Dr. Claudia Bank heads the Evolutionary Dynamics group at the Gulbenkian Science Institute in Oeiras, Portugal. Her group studies the population genetics of adaptation and speciation using a combination of mathematical modeling, statistical method development and data analysis, and experimental evolution. After an undergraduate degree in Mathematics from the University of Bielefeld, Germany, Dr. Bank earned her PhD in Population Genetics from the University of Veterinary Medicine in Vienna, Austria, supervised by Joachim Hermisson, followed by a postdoc with Jeffrey Jensen at the Ecole Polytechnique Fédérale de Lausanne in Switzerland. During her PhD and postdoc, she undertook two research stays in the group of Mark Kirkpatrick at UT Austin, and at the Simons Institute for the Theory of Computing at UC Berkeley. Dr. Bank is currently supported by grants from the Portuguese Science Foundation, the European Research Council, and the European Molecular Biology Organization to expand her studies of fitness landscapes across environments and biological levels of organization.

2019 SMBE Margaret Dayhoff Mid-Career Award Winner: Patricia Wittkopp

Patricia Wittkopp is Sally L. Allen and Arthur F. Thurnau Professor of Ecology and Evolutionary Biology as well as Molecular, Cellular, and Developmental Biology at the University of Michigan. She studies the genetic basis of phenotypic differences, with an emphasis on the regulation of gene expression. Molecular and developmental biology, population and quantitative genetics, genomics and bioinformatics are integrated in her work.  Patricia Wittkopp received her B.S. from the University of Michigan working with Greg Gibson, a PhD from the University of Wisconsin working with Sean Carroll, and did postdoctoral work at Cornell University working with Andy Clark. Dr. Wittkopp was a Damon Runyon Cancer Research Fellow, an Alfred P Sloan Research Fellow, a March of Dimes Starter Scholar, and currently serves as Senior Editor at eLife and Associate Editor at Molecular Biology and Evolution and GENETICS.

2019 SMBE Motoo Kimura Lifetime Contribution Award Winner: Wen-Hsiung Li

Wen-Hsiung Li is a Distinguished Research Fellow at the Biodiversity R

Continue Reading →

  • Monday, April 01, 2019
  • Comments (0)

SMBE 2019, 21-25 July 2019, Manchester, UK – Registration Launch and Abstracts Submission Deadline

We are delighted to announce that registration for SMBE 2019 is now live. SMBE 2019 is taking place in Manchester, UK on 21-25 July 2019 at the state of the art venue Manchester Central. Full details on the symposia programme and confirmed keynote speakers can be viewed here.

Information on the registration fees can be viewed here. Register before the early bird deadline on Wednesday 8 May in order to secure discounted registration rates.

Please note that in order to receive a discounted member-rate registration you will be asked to provide your SMBE member number. Active members were sent an email that includes their membership number.

For questions regarding your membership number, please contact smbe@allenpress.com.

You can book your accommodation from a range of city centre properties from inside the registration system.

Delegates requiring a VISA in order to attend SMBE 2019 can select this option within the registration system. The registration team will be able to assist in creating the documentation in order to support your VISA application.

Carer Travel Awards can be applied for as part of conference registration. SMBE will make available up to $2000 to SMBE members with children or dependent adults (including adult children with a disability or elderly relatives) to spend as they wish to facilitate the member’s attendance at the annual SMBE meeting. Examples of eligible expenses include (but are not limited to) providing airfare for your child or for your caregiver to accompany you, flying a relative out to help with care at your home while you’re at the meeting, or extra help paying for on-site daycare.

Abstract and Award submission deadline.

The abstract submission deadline is fast approaching. The deadline for abstracts is midnight GMT on Sunday 17 March 2019. Please be aware that the deadline will not be extended. Abstracts should be no longer than 2500 characters (~250 words), with a title no longer than 300 characters. Full details on abstract topics, guidance and the submission portal can be found here.

A range of awards can be applied for during Abstract submission, all of which require SMBE membership (costing only $10/$30 for 3 years for students/others at https://www.smbe.org/smbe/MEMBERSHIP.aspx) at the time of application.

Current graduate students and postdoctoral researchers who received their primary doctoral-level degree no earlier than one year prior to the start of the annual meeting of the society may apply for the Fitch award. Extended abstracts are no longer required this year, just the conference abstract and a cv. Unsuccessful Fitch applicants will automatically be considered for Young Investigator and Registration awards.

Any graduate student or postdoc may apply for the Young Investigator Award, which substantially funds the cost of attending. Application materials are the same as for the Fitch,

Continue Reading →

  • Thursday, March 14, 2019
  • Comments (0)


Forgot username/password?

Registration and Membership

Non-Members: You must Register for an account to purchase a membership and conduct other transactions. Future visits to the website will only require login.

After login or registration: You may conduct online transactions such as joining or renewing a membership, registering for an annual meeting and making donations.


The Society for Molecular Biology and Evolution is an international organization whose goals are to provide facilities for association and communication among molecular evolutionists and to further the goals of molecular evolution, as well as its practitioners and teachers. In order to accomplish these goals, the Society publishes two peer-reviewed journals, Molecular Biology and Evolution and Genome Biology and Evolution. The Society sponsors an annual meeting, as well as smaller satellite meetings or workshop on important, focused, and timely topics. It also confers honors and awards to students and researchers.

SMBE 2019

We are delighted to announce that the SMBE 2019 Meeting will be taking place in Manchester, United Kingdom. The Meeting will be held at the state of the art Manchester Central venue.

The programme will provide plenty of opportunities for you to submit your work for consideration as a symposium, oral or poster presentation.

Full details on registration fees, accommodation and exhibition opportunities will be made available in due course. Please do make a note of the key dates included below.

More information can be found HERE


SMBE is a member of the Scientific Society Publisher Alliance

@OfficialSMBE Feed

MBE | Most Read

Molecular Biology and Evolution

Genetic Affinities among Southern Africa Hunter-Gatherers and the Impact of Admixing Farmer and Herder Populations

Tue, 09 Jul 2019 00:00:00 GMT

Southern African indigenous groups, traditionally hunter-gatherers (San) and herders (Khoekhoe), are commonly referred to as “Khoe-San” populations and have a long history in southern Africa. Their ancestors were largely isolated up until ∼2,000 years ago before the arrival of pastoralists and farmers in southern Africa. Assessing relationships among regional Khoe-San groups has been challenging due to admixture with immigrant populations that obscure past population affinities and gene flow among these autochthonous communities. We re-evaluate a combined genome-wide data set of previously published southern Africa Khoe-San populations in conjunction with novel data from Khoe-San individuals collected in Xade (Central Kalahari Game Reserve, Botswana) prior to their resettlement outside the reserve. After excluding regions in the genome that trace their ancestry to recent migrant groups, the genetic diversity of 20 Khoe-San groups fitted an isolation-by-distance model. Even though isolation-by-distance explained most genetic affinities between the different autochthonous groups, additional signals of contact between Khoe-San groups could be detected. For instance, we found stronger genetic affinities, than what would be explained by isolation-by-distance gene flow, between the two geographically separated Khoe-San groups, who speak branches of the Kx’a-language family (ǂHoan and Ju). We also scanned the genome-wide data for signals of adaptive gene flow from farmers/herders into Khoe-San groups and identified a number of genomic regions potentially introduced by the arrival of the new groups. This study provides a comprehensive picture of affinities among Khoe-San groups, prior to the arrival of recent migrants, and found that these affinities are primarily determined by the geographic landscape.

Multiple Independent Recruitment of Sodefrin Precursor-Like Factors in Anuran Sexually Dimorphic Glands

Tue, 25 Jun 2019 00:00:00 GMT

Chemical signaling in animals often plays a central role in eliciting a variety of responses during reproductive interactions between males and females. One of the best-known vertebrate courtship pheromone systems is sodefrin precursor-like factors (SPFs), a family of two-domain three-finger proteins with a female-receptivity enhancing function, currently only known from salamanders. The oldest divergence between active components in a single salamander species dates back to the Late Paleozoic, indicating that these proteins potentially gained a pheromone function earlier in amphibian evolution. Here, we combined whole transcriptome sequencing, proteomics, histology, and molecular phylogenetics in a comparative approach to investigate SPF occurrence in male breeding glands across the evolutionary tree of anurans (frogs and toads). Our study shows that multiple families of both terrestrially and aquatically reproducing frogs have substantially increased expression levels of SPFs in male breeding glands. This suggests that multiple anuran lineages make use of SPFs to complement acoustic and visual sexual signaling during courtship. Comparative analyses show that anurans independently recruited these proteins each time the gland location on the male’s body allowed efficient transmission of the secretion to the female’s nares.

Variation in Recombination Rate Is Shaped by Domestication and Environmental Conditions in Barley

Tue, 18 Jun 2019 00:00:00 GMT

Meiotic recombination generates genetic diversity upon which selection can act. Recombination rates are highly variable between species, populations, individuals, sexes, chromosomes, and chromosomal regions. The underlying mechanisms are controlled at the genetic and epigenetic level and show plasticity toward the environment. Environmental plasticity may be divided into short- and long-term responses. We estimated recombination rates in natural populations of wild barley and domesticated landraces using a population genetics approach. We analyzed recombination landscapes in wild barley and domesticated landraces at high resolution. In wild barley, high recombination rates are found in more interstitial chromosome regions in contrast to distal chromosome regions in domesticated barley. Among subpopulations of wild barley, natural variation in effective recombination rate is correlated with temperature, isothermality, and solar radiation in a nonlinear manner. A positive linear correlation was found between effective recombination rate and annual precipitation. We discuss our findings with respect to how the environment might shape effective recombination rates in natural populations. Higher recombination rates in wild barley populations subjected to specific environmental conditions could be a means to maintain fitness in a strictly inbreeding species.

The Impact of Protein Architecture on Adaptive Evolution

Thu, 30 May 2019 00:00:00 GMT

Adaptive mutations play an important role in molecular evolution. However, the frequency and nature of these mutations at the intramolecular level are poorly understood. To address this, we analyzed the impact of protein architecture on the rate of adaptive substitutions, aiming to understand how protein biophysics influences fitness and adaptation. Using Drosophila melanogaster and Arabidopsis thaliana population genomics data, we fitted models of distribution of fitness effects and estimated the rate of adaptive amino-acid substitutions both at the protein and amino-acid residue level. We performed a comprehensive analysis covering genome, gene, and protein structure, by exploring a multitude of factors with a plausible impact on the rate of adaptive evolution, such as intron number, protein length, secondary structure, relative solvent accessibility, intrinsic protein disorder, chaperone affinity, gene expression, protein function, and protein–protein interactions. We found that the relative solvent accessibility is a major determinant of adaptive evolution, with most adaptive mutations occurring at the surface of proteins. Moreover, we observe that the rate of adaptive substitutions differs between protein functional classes, with genes encoding for protein biosynthesis and degradation signaling exhibiting the fastest rates of protein adaptation. Overall, our results suggest that adaptive evolution in proteins is mainly driven by intermolecular interactions, with host–pathogen coevolution likely playing a major role.

The Birth and Death of Toxins with Distinct Functions: A Case Study in the Sea Anemone Nematostella

Mon, 27 May 2019 00:00:00 GMT

The cnidarian Nematostella vectensis has become an established lab model, providing unique opportunities for venom evolution research. The Nematostella venom system is multimodal: involving both nematocytes and ectodermal gland cells, which produce a toxin mixture whose composition changes throughout the life cycle. Additionally, their modes of interaction with predators and prey vary between eggs, larvae, and adults, which is likely shaped by the dynamics of the venom system.Nv1 is a major component of adult venom, with activity against arthropods (through specific inhibition of sodium channel inactivation) and fish. Nv1 is encoded by a cluster of at least 12 nearly identical genes that were proposed to be undergoing concerted evolution. Surprisingly, we found that Nematostella venom includes several Nv1 paralogs escaping a pattern of general concerted evolution, despite belonging to the Nv1-like family. Here, we show two of these new toxins, Nv4 and Nv5, are lethal for zebrafish larvae but harmless to arthropods, unlike Nv1. Furthermore, unlike Nv1, the newly identified toxins are expressed in early life stages. Using transgenesis and immunostaining, we demonstrate that Nv4 and Nv5 are localized to ectodermal gland cells in larvae.The evolution of Nv4 and Nv5 can be described either as neofunctionalization or as subfunctionalization. Additionally, the Nv1-like family includes several pseudogenes being an example of nonfunctionalization and venom evolution through birth-and-death mechanism. Our findings reveal the evolutionary history for a toxin radiation and point toward the ecological function of the novel toxins constituting a complex cnidarian venom.

Operon Concatenation Is an Ancient Feature That Restricts the Potential to Rearrange Bacterial Chromosomes

Mon, 27 May 2019 00:00:00 GMT

The last common ancestor of the Gammaproteobacteria carried an important 40-kb chromosome section encoding 51 proteins of the transcriptional and translational machinery. These genes were organized into eight contiguous operons (rrnB-tufB-secE-rpoBC-str-S10-spc-alpha). Over 2 Gy of evolution, in different lineages, some of the operons became separated by multigene insertions. Surprisingly, in many Enterobacteriaceae, much of the ancient organization is conserved, indicating a strong selective force on the operons to remain colinear. Here, we show for one operon pair, tufB-secE in Salmonella, that an interruption of contiguity significantly reduces growth rate. Our data show that the tufB-secE operons are concatenated by an interoperon terminator–promoter overlap that plays a significant role regulating gene expression. Interrupting operon contiguity interferes with this regulation, reducing cellular fitness. Six operons of the ancestral chromosome section remain contiguous in Salmonella (tufB-secE-rpoBC and S10-spc-alpha) and, strikingly, each of these operon pairs is also connected by an interoperon terminator–promoter overlap. Accordingly, we propose that operon concatenation is an ancient feature that restricts the potential to rearrange bacterial chromosomes and can select for the maintenance of a colinear operon organization over billions of years.

A Fast Likelihood Method to Reconstruct and Visualize Ancestral Scenarios

Fri, 24 May 2019 00:00:00 GMT

The reconstruction of ancestral scenarios is widely used to study the evolution of characters along phylogenetic trees. One commonly uses the marginal posterior probabilities of the character states, or the joint reconstruction of the most likely scenario. However, marginal reconstructions provide users with state probabilities, which are difficult to interpret and visualize, whereas joint reconstructions select a unique state for every tree node and thus do not reflect the uncertainty of inferences.We propose a simple and fast approach, which is in between these two extremes. We use decision-theory concepts (namely, the Brier score) to associate each node in the tree to a set of likely states. A unique state is predicted in tree regions with low uncertainty, whereas several states are predicted in uncertain regions, typically around the tree root. To visualize the results, we cluster the neighboring nodes associated with the same states and use graph visualization tools. The method is implemented in the PastML program and web server.The results on simulated data demonstrate the accuracy and robustness of the approach. PastML was applied to the phylogeography of Dengue serotype 2 (DENV2), and the evolution of drug resistances in a large HIV data set. These analyses took a few minutes and provided convincing results. PastML retrieved the main transmission routes of human DENV2 and showed the uncertainty of the human-sylvatic DENV2 geographic origin. With HIV, the results show that resistance mutations mostly emerge independently under treatment pressure, but resistance clusters are found, corresponding to transmissions among untreated patients.

Modeling Structural Constraints on Protein Evolution via Side-Chain Conformational States

Wed, 22 May 2019 00:00:00 GMT

Few models of sequence evolution incorporate parameters describing protein structure, despite its high conservation, essential functional role and increasing availability. We present a structurally aware empirical substitution model for amino acid sequence evolution in which proteins are expressed using an expanded alphabet that relays both amino acid identity and structural information. Each character specifies an amino acid as well as information about the rotamer configuration of its side-chain: the discrete geometric pattern of permitted side-chain atomic positions, as defined by the dihedral angles between covalently linked atoms. By assigning rotamer states in 251,194 protein structures and identifying 4,508,390 substitutions between closely related sequences, we generate a 55-state “Dayhoff-like” model that shows that the evolutionary properties of amino acids depend strongly upon side-chain geometry. The model performs as well as or better than traditional 20-state models for divergence time estimation, tree inference, and ancestral state reconstruction. We conclude that not only is rotamer configuration a valuable source of information for phylogenetic studies, but that modeling the concomitant evolution of sequence and structure may have important implications for understanding protein folding and function.

Ancestral Admixture Is the Main Determinant of Global Biodiversity in Fission Yeast

Mon, 20 May 2019 00:00:00 GMT

Mutation and recombination are key evolutionary processes governing phenotypic variation and reproductive isolation. We here demonstrate that biodiversity within all globally known strains of Schizosaccharomyces pombe arose through admixture between two divergent ancestral lineages. Initial hybridization was inferred to have occurred ∼20–60 sexual outcrossing generations ago consistent with recent, human-induced migration at the onset of intensified transcontinental trade. Species-wide heritable phenotypic variation was explained near-exclusively by strain-specific arrangements of alternating ancestry components with evidence for transgressive segregation. Reproductive compatibility between strains was likewise predicted by the degree of shared ancestry. To assess the genetic determinants of ancestry block distribution across the genome, we characterized the type, frequency, and position of structural genomic variation using nanopore and single-molecule real-time sequencing. Despite being associated with double-strand break initiation points, over 800 segregating structural variants exerted overall little influence on the introgression landscape or on reproductive compatibility between strains. In contrast, we found strong ancestry disequilibrium consistent with negative epistatic selection shaping genomic ancestry combinations during the course of hybridization. This study provides a detailed, experimentally tractable example that genomes of natural populations are mosaics reflecting different evolutionary histories. Exploiting genome-wide heterogeneity in the history of ancestral recombination and lineage-specific mutations sheds new light on the population history of S. pombe and highlights the importance of hybridization as a creative force in generating biodiversity.

Many Options, Few Solutions: Over 60 My Snakes Converged on a Few Optimal Venom Formulations

Mon, 20 May 2019 00:00:00 GMT

Gene expression changes contribute to complex trait variations in both individuals and populations. However, the evolution of gene expression underlying complex traits over macroevolutionary timescales remains poorly understood. Snake venoms are proteinaceous cocktails where the expression of each toxin can be quantified and mapped to a distinct genomic locus and traced for millions of years. Using a phylogenetic generalized linear mixed model, we analyzed expression data of toxin genes from 52 snake species spanning the 3 venomous snake families and estimated phylogenetic covariance, which acts as a measure of evolutionary constraint. We find that evolution of toxin combinations is not constrained. However, although all combinations are in principle possible, the actual dimensionality of phylomorphic space is low, with envenomation strategies focused around only four major toxin families: metalloproteases, three-finger toxins, serine proteases, and phospholipases A2. Although most extant snakes prioritize either a single or a combination of major toxin families, they are repeatedly recruited and lost. We find that over macroevolutionary timescales, the venom phenotypes were not shaped by phylogenetic constraints, which include important microevolutionary constraints such as epistasis and pleiotropy, but more likely by ecological filtering that permits a small number of optimal solutions. As a result, phenotypic optima were repeatedly attained by distantly related species. These results indicate that venoms evolve by selection on biochemistry of prey envenomation, which permit diversity through parallelism, and impose strong limits, since only a few of the theoretically possible strategies seem to work well and are observed in extant snakes.

Protein Melting Temperature Cannot Fully Assess Whether Protein Folding Free Energy Underlies the Universal Abundance–Evolutionary Rate Correlation Seen in Proteins

Wed, 15 May 2019 00:00:00 GMT

The protein misfolding avoidance hypothesis explains the universal negative correlation between protein abundance and sequence evolutionary rate across the proteome by identifying protein folding free energy (ΔG) as the confounding variable. Abundant proteins resist toxic misfolding events by being more stable, and more stable proteins evolve slower because their mutations are more destabilizing. Direct supporting evidence consists only of computer simulations. A study taking advantage of a recent experimental breakthrough in measuring protein stability proteome-wide through melting temperature (Tm) (Leuenberger et al. 2017), found weak misfolding avoidance hypothesis support for the Escherichia coli proteome, and no support for the Saccharomyces cerevisiae, Homo sapiens, and Thermus thermophilus proteomes (Plata and Vitkup 2018). I find that the nontrivial relationship between Tm and ΔG and inaccuracy in Tm measurements by Leuenberger et al. 2017 can be responsible for not observing strong positive abundance–Tm and strong negative Tm–evolutionary rate correlations.

Human Migration and the Spread of the Nematode Parasite Wuchereria bancrofti

Sat, 11 May 2019 00:00:00 GMT

The human disease lymphatic filariasis causes the debilitating effects of elephantiasis and hydrocele. Lymphatic filariasis currently affects the lives of 90 million people in 52 countries. There are three nematodes that cause lymphatic filariasis, Brugia malayi, Brugia timori, and Wuchereria bancrofti, but 90% of all cases of lymphatic filariasis are caused solely by W. bancrofti (Wb). Here we use population genomics to reconstruct the probable route and timing of migration of Wb strains that currently infect Africa, Haiti, and Papua New Guinea (PNG). We used selective whole genome amplification to sequence 42 whole genomes of single Wb worms from populations in Haiti, Mali, Kenya, and PNG. Our results are consistent with a hypothesis of an Island Southeast Asia or East Asian origin of Wb. Our demographic models support divergence times that correlate with the migration of human populations. We hypothesize that PNG was infected at two separate times, first by the Melanesians and later by the migrating Austronesians. The migrating Austronesians also likely introduced Wb to Madagascar where later migrations spread it to continental Africa. From Africa, Wb spread to the New World during the transatlantic slave trade. Genome scans identified 17 genes that were highly differentiated among Wb populations. Among these are genes associated with human immune suppression, insecticide sensitivity, and proposed drug targets. Identifying the distribution of genetic diversity in Wb populations and selection forces acting on the genome will build a foundation to test future hypotheses and help predict response to current eradication efforts.

Intraspecific Variation in Microsatellite Mutation Profiles in Daphnia magna

Sat, 11 May 2019 00:00:00 GMT

Microsatellite loci (tandem repeats of short nucleotide motifs) are highly abundant in eukaryotic genomes and often used as genetic markers because they can exhibit variation both within and between populations. Although widely recognized for their mutability and utility, the mutation rates of microsatellites have only been empirically estimated in a few species, and have rarely been compared across genotypes and populations within a species. Here, we investigate the dynamics of microsatellite mutation over long- and short-time periods by quantifying the starting abundance and mutation rates for microsatellites for six different genotypes of Daphnia magna, an aquatic microcrustacean, collected from three populations (Finland, Germany, and Israel). Using whole-genome sequences of these six starting genotypes, descendent mutation accumulation (MA) lines, and large population controls (non-MA lines), we find each genotype exhibits a distinctive initial microsatellite profile which clusters according to the population-of-origin. During the period of MA, we observe motif-specific, highly variable, and rapid microsatellite mutation rates across genotypes of D. magna, the average of which is order of magnitude greater than the recently reported rate observed in a single genotype of the congener, Daphnia pulex. In our experiment, genotypes with more microsatellites starting out exhibit greater losses and those with fewer microsatellites starting out exhibit greater gains—a context-dependent mutation bias that has not been reported previously. We discuss how genotype-specific mutation rates and spectra, in conjunction with evolutionary forces, can shape both the differential accumulation of repeat content in the genome and the evolution of mutation rates.

Molecular Evolution in Large Steps—Codon Substitutions under Positive Selection

Sat, 11 May 2019 00:00:00 GMT

Molecular evolution is believed to proceed in small steps. The step size can be defined by a distance reflecting physico-chemical disparities between amino acid (AA) pairs that can be exchanged by single 1-bp mutations. We show that AA substitution rates are strongly and negatively correlated with this distance but only when positive selection is relatively weak. We use the McDonald and Kreitman test to separate the influences of positive and negative selection. While negative selection is indeed stronger on AA substitutions generating larger changes in chemical properties of AAs, positive selection operates by different rules. For 65 of the 75 possible pairs, positive selection is comparable in strength regardless of AA distance. However, the ten pairs under the strongest positive selection all exhibit large leaps in chemical properties. Five of the ten pairs are shared between Drosophila and Hominoids, thus hinting at a common but modest biochemical basis of adaptation across taxa. The hypothesis that adaptive changes often take large functional steps will need to be extensively tested. If validated, molecular models will need to better integrate positive and negative selection in the search for adaptive signal.

The Legacy of Sexual Ancestors in Phenotypic Variability, Gene Expression, and Homoeolog Regulation of Asexual Hybrids and Polyploids

Sat, 11 May 2019 00:00:00 GMT

Hybridization and polyploidization are important evolutionary processes whose impacts range from the alteration of gene expression and phenotypic variation to the triggering of asexual reproduction. We investigated fishes of the Cobitis taenia-elongatoides hybrid complex, which allowed us to disentangle the direct effects of both processes, due to the co-occurrence of parental species with their diploid and triploid hybrids. Employing morphological, ecological, and RNAseq approaches, we investigated the molecular determinants of hybrid and polyploid forms.In contrast with other studies, hybridization and polyploidy induced relatively very little transgressivity. Instead, Cobitis hybrids appeared intermediate with a clear effect of genomic dosing when triploids expressed higher similarity to the parent contributing two genome sets. This dosage effect was symmetric in the germline (oocyte gene expression), interestingly though, we observed an overall bias toward C. taenia in somatic tissues and traits. At the level of individual genes, expression-level dominance vastly prevailed over additivity or transgressivity. Also, trans-regulation of gene expression was less efficient in diploid hybrids than in triploids, where the expression modulation of homoeologs derived from the “haploid” parent was stronger than those derived from the “diploid” parent.Our findings suggest that the apparent intermediacy of hybrid phenotypes results from the combination of individual genes with dominant expression rather than from simple additivity. The efficiency of cross-talk between trans-regulatory elements further appears dosage dependent. Important effects of polyploidization may thus stem from changes in relative concentrations of trans-regulatory elements and their binding sites between hybridizing genomes. Links between gene regulation and asexuality are discussed.

Limits to Compensatory Mutations: Insights from Temperature-Sensitive Alleles

Mon, 06 May 2019 00:00:00 GMT

Previous experiments with temperature-sensitive mutants of the yeast enzyme orotidine 5′-phosphate decarboxylase (encoded in gene URA3) yielded the unexpected result that reversion occurs only through exact reversal of the original mutation (Jakubowska A, Korona R. 2009. Lack of evolutionary conservation at positions important for thermal stability in the yeast ODCase protein. Mol Biol Evol. 26(7):1431–1434.). We recreated a set of these mutations in which the codon had two nucleotide substitutions, making exact reversion much less likely. We screened these double mutants for reversion and obtained a number of compensatory mutations occurring at alternative sites in the molecule. None of these compensatory mutations fully restored protein performance. The mechanism of partial compensation is consistent with a model in which protein stabilization is additive, as the same secondary mutations can compensate different primary alternations. The distance between primary and compensatory residues precludes direct interaction between the sites. Instead, most of the compensatory mutants were clustered in proximity to the catalytic center. All of the second-site compensatory substitutions occurred at relatively conserved sites, and the amino acid replacements were to residues found at these sites in a multispecies alignment of the protein. Based on the estimated distribution of changes in Gibbs free energy among a large number of amino acid replacements, we estimate that, for most proteins, the probability that a second-site mutation would have a sufficiently large stabilizing effect to offset a temperature-sensitive mutation in the order of 10−4 or less. Hence compensation is likely to take place only for slightly destabilizing mutations because highly stabilizing mutations are exceeding rare.

Unprecedented Parallel Photosynthetic Losses in a Heterotrophic Orchid Genus

Mon, 06 May 2019 00:00:00 GMT

Heterotrophic plants are evolutionary experiments in genomic, morphological, and physiological change. Yet, genomic sampling gaps exist among independently derived heterotrophic lineages, leaving unanswered questions about the process of genome modification. Here, we have sequenced complete plastid genomes for all species of the leafless orchid genus Hexalectris, including multiple individuals for most, and leafy relatives Basiphyllaea and Bletia. Our objectives are to determine the number of independent losses of photosynthesis and to test hypotheses on the process of genome degradation as a result of relaxed selection. We demonstrate four to five independent losses of photosynthesis in Hexalectris based on degradation of the photosynthetic apparatus, with all but two species displaying evidence of losses, and variation in gene loss extending below the species level. Degradation in the atp complex is advanced in Hexalectris warnockii, whereas only minimal degradation (i.e., physical loss) has occurred among some “housekeeping” genes. We find genomic rearrangements, shifts in Inverted Repeat boundaries including complete loss in one accession of H. arizonica, and correlations among substitutional and genomic attributes. Our unprecedented finding of multiple, independent transitions to a fully mycoheterotrophic lifestyle in a single genus reveals that the number of such transitions among land plants is likely underestimated. This study underscores the importance of dense taxon sampling, which is highly informative for advancing models of genome evolution in heterotrophs. Mycoheterotrophs such as Hexalectris provide forward-genetic opportunities to study the consequences of radical genome evolution beyond what is possible with mutational studies in model organisms alone.

Shared Signature Dynamics Tempered by Local Fluctuations Enables Fold Adaptability and Specificity

Sat, 27 Apr 2019 00:00:00 GMT

Recent studies have drawn attention to the evolution of protein dynamics, in addition to sequence and structure, based on the premise structure-encodes-dynamics-encodes-function. Of interest is to understand how functional differentiation is accomplished while maintaining the fold, or how intrinsic dynamics plays out in the evolution of structural variations and functional specificity. We performed a systematic computational analysis of 26,899 proteins belonging to 116 CATH superfamilies. Characterizing cooperative mechanisms and convergent/divergent features that underlie the shared/differentiated dynamics of family members required a methodology that lends itself to efficient analyses of large ensembles of proteins. We therefore introduced, SignDy, an integrated pipeline for evaluating the signature dynamics of families based on elastic network models. Our analysis confirmed that family members share conserved, highly cooperative (global) modes of motion. Importantly, our analysis discloses a subset of motions that sharply distinguishes subfamilies, which lie in a low-to-intermediate frequency regime of the mode spectrum. This regime has maximal impact on functional differentiation of families into subfamilies, while being evolutionarily conserved among subfamily members. Notably, the high-frequency end of the spectrum also reveals evolutionary conserved features across and within subfamilies; but in sharp contrast to global motions, high-frequency modes are minimally collective. Modulation of robust/conserved global dynamics by low-to-intermediate frequency fluctuations thus emerges as a versatile mechanism ensuring the adaptability of selected folds and the specificity of their subfamilies. SignDy further allows for dynamics-based categorization as a new layer of information relevant to distinctive mechanisms of action of subfamilies, beyond sequence or structural classifications.

Robust Estimation of Recent Effective Population Size from Number of Independent Origins in Soft Sweeps

Tue, 09 Apr 2019 00:00:00 GMT

Estimating recent effective population size is of great importance in characterizing and predicting the evolution of natural populations. Methods based on nucleotide diversity may underestimate current day effective population sizes due to historical bottlenecks, whereas methods that reconstruct demographic history typically only detect long-term variations. However, soft selective sweeps, which leave a fingerprint of mutational history by recurrent mutations on independent haplotype backgrounds, holds promise of an estimate more representative of recent population history. Here, we present a simple and robust method of estimation based only on knowledge of the number of independent recurrent origins and the current frequency of the beneficial allele in a population sample, independent of the strength of selection and age of the mutation. Using a forward-time theoretical framework, we show the mean number of origins is a function of θ=2Nμ and current allele frequency, through a simple equation, and the distribution is approximately Poisson. This estimate is robust to whether mutants preexisted before selection arose and is equally accurate for diploid populations with incomplete dominance. For fast (e.g., seasonal) demographic changes compared with time scale for fixation of the mutant allele, and for moderate peak-to-trough ratios, we show our constant population size estimate can be used to bound the maximum and minimum population size. Applied to the Vgsc gene of Anopheles gambiae, we estimate an effective population size of roughly 6×107, and including seasonal demographic oscillations, a minimum effective population size >3×107, and a maximum <6×109, suggesting a mean ∼109.

GBE | Most Read

Genome Biology & Evolution

Avian Binocularity and Adaptation to Nocturnal Environments: Genomic Insights from a Highly Derived Visual Phenotype

Thu, 22 Aug 2019 00:00:00 GMT

Typical avian eyes are phenotypically engineered for photopic vision (daylight). In contrast, the highly derived eyes of the barn owl (Tyto alba) are adapted for scotopic vision (dim light). The dramatic modifications distinguishing barn owl eyes from other birds include: 1) shifts in frontal orientation to improve binocularity, 2) rod-dominated retina, and 3) enlarged corneas and lenses. Some of these features parallel mammalian eye patterns, which are hypothesized to have initially evolved in nocturnal environments. Here, we used an integrative approach combining phylogenomics and functional phenotypes of 211 eye-development genes across 48 avian genomes representing most avian orders, including the stem lineage of the scotopic-adapted barn owl. Overall, we identified 25 eye-development genes that coevolved under intensified or relaxed selection in the retina, lens, cornea, and optic nerves of the barn owl. The agtpbp1 gene, which is associated with the survival of photoreceptor populations, was pseudogenized in the barn owl genome. Our results further revealed that barn owl retinal genes responsible for the maintenance, proliferation, and differentiation of photoreceptors experienced an evolutionary relaxation. Signatures of relaxed selection were also observed in the lens and cornea morphology-associated genes, suggesting that adaptive evolution in these structures was essentially structural. Four eye-development genes (ephb1, phactr4, prph2, and rs1) evolved in positive association with the orbit convergence in birds and under relaxed selection in the barn owl lineage, likely contributing to an increased reliance on binocular vision in the barn owl. Moreover, we found evidence of coevolutionary interactions among genes that are expressed in the retina, lens, and optic nerve, suggesting synergetic adaptive events. Our study disentangles the genomic changes governing the binocularity and low-light perception adaptations of barn owls to nocturnal environments while revealing the molecular mechanisms contributing to the shift from the typical avian photopic vision to the more-novel scotopic-adapted eye.

Draft Genome of Busseola fusca, the Maize Stalk Borer, a Major Crop Pest in Sub-Saharan Africa

Wed, 31 Jul 2019 00:00:00 GMT

The maize stalk borer, Busseola fusca, is an important Lepidopteran pest of cereal crops in Central, East, and Southern Africa. Crop losses due to B. fusca feeding activity vary by region, but can result in total crop loss in areas with high levels of infestation. Genomic resources provide critical insight into the biology of pest species and can allow for the development of effective management tools and strategies to mitigate their impact on agriculture. To this end, we sequenced, assembled, and annotated the genome of B. fusca. The total assembled genome size was 492.9 Mb with 19,417 annotated protein-coding genes. Using a comparative approach, we identified a putative expansion in the Chorion gene family, which is involved in the formation of the egg shell structure. Our analysis revealed high repeat content within the B. fusca genome, with LTR sequences comprising the majority of the repetitive sequence. We hope genomic resources will provide a foundation for future work aimed at developing an integrated pest management strategy to reduce B. fusca’s impact on food security.

Geography Shapes the Population Genomics of Salmonella enterica Dublin

Mon, 22 Jul 2019 00:00:00 GMT

Salmonella enterica serotype Dublin (S. Dublin) is a bovine-adapted serotype that can cause serious systemic infections in humans. Despite the increasing prevalence of human infections and the negative impact on agricultural processes, little is known about the population structure of the serotype. To this end, we compiled a manually curated data set comprising of 880 S. Dublin genomes. Core genome phylogeny and ancestral state reconstruction revealed that region-specific clades dominate the global population structure of S. Dublin. Strains of S. Dublin in the UK are genomically distinct from US, Brazilian, and African strains. The geographical partitioning impacts the composition of the core genome as well as the ancillary genome. Antibiotic resistance genes are almost exclusively found in US genomes and are mediated by an IncA/C2 plasmid. Phage content and the S. Dublin virulence plasmid were strongly conserved in the serotype. Comparison of S. Dublin to a closely related serotype, S. enterica serotype Enteritidis, revealed that S. Dublin contains 82 serotype specific genes that are not found in S. Enteritidis. Said genes encode metabolic functions involved in the uptake and catabolism of carbohydrates and virulence genes associated with type VI secretion systems and fimbria assembly respectively.

A Comprehensive Survey on the Terpene Synthase Gene Family Provides New Insight into Its Evolutionary Patterns

Mon, 15 Jul 2019 00:00:00 GMT

Terpenes are organic compounds and play important roles in plant growth and development as well as in mediating interactions of plants with the environment. Terpene synthases (TPSs) are the key enzymes responsible for the biosynthesis of terpenes. Although some species were employed for the genome-wide identification and characterization of the TPS family, limited information is available regarding the evolution, expansion, and retention mechanisms occurring in this gene family. We performed a genome-wide identification of the TPS family members in 50 sequenced genomes. Additionally, we also characterized the TPS family from aromatic spearmint and basil plants using RNA-Seq data. No TPSs were identified in algae genomes but the remaining plant species encoded various numbers of the family members ranging from 2 to 79 full-length TPSs. Some species showed lineage-specific expansion of certain subfamilies, which might have contributed toward species or ecotype divergence or environmental adaptation. A large-scale family expansion was observed mainly in dicot and monocot plants, which was accompanied by frequent domain loss. Both tandem and segmental duplication significantly contributed toward family expansion and expression divergence and played important roles in the survival of these expanded genes. Our data provide new insight into the TPS family expansion and evolution and suggest that TPSs might have originated from isoprenyl diphosphate synthase genes.

Evolution of Phototransduction Genes in Lepidoptera

Fri, 12 Jul 2019 00:00:00 GMT

Vision is underpinned by phototransduction, a signaling cascade that converts light energy into an electrical signal. Among insects, phototransduction is best understood in Drosophila melanogaster. Comparison of D. melanogaster against three insect species found several phototransduction gene gains and losses, however, lepidopterans were not examined. Diurnal butterflies and nocturnal moths occupy different light environments and have distinct eye morphologies, which might impact the expression of their phototransduction genes. Here we investigated: 1) how phototransduction genes vary in gene gain or loss between D. melanogaster and Lepidoptera, and 2) variations in phototransduction genes between moths and butterflies. To test our prediction of phototransduction differences due to distinct visual ecologies, we used insect reference genomes, phylogenetics, and moth and butterfly head RNA-Seq and transcriptome data. As expected, most phototransduction genes were conserved between D. melanogaster and Lepidoptera, with some exceptions. Notably, we found two lepidopteran opsins lacking a D. melanogaster ortholog. Using antibodies we found that one of these opsins, a candidate retinochrome, which we refer to as unclassified opsin (UnRh), is expressed in the crystalline cone cells and the pigment cells of the butterfly, Heliconius melpomene. Our results also show that butterflies express similar amounts of trp and trpl channel mRNAs, whereas moths express ∼50× less trp, a potential adaptation to darkness. Our findings suggest that while many single-copy D. melanogaster phototransduction genes are conserved in lepidopterans, phototransduction gene expression differences exist between moths and butterflies that may be linked to their visual light environment.

Genome Resequencing Reveals Congenital Causes of Embryo and Nestling Death in Crested Ibis (Nipponia nippon)

Fri, 12 Jul 2019 00:00:00 GMT

The crested ibis (Nipponia nippon) is endangered worldwide. Although a series of conservation measures have markedly increased the population size and distribution area of these birds, the high mortality of embryos and nestlings considerably decreases the survival potential of this bird species. High-throughput sequencing technology was utilized to compare whole genomes between ten samples from dead crested ibises (including six dead embryos and four dead nestlings aged 0–45 days) and 32 samples from living birds. The results indicated that the dead samples all shared the genetic background of a specific ancestral subpopulation. Furthermore, the dead individuals were less genetically diverse and suffered higher degrees of inbreeding compared with these measures in live birds. Several candidate genes (KLHL3, SETDB2, TNNT2, PKP1, AK1, and EXOSC3) associated with detrimental diseases were identified in the genomic regions that differed between the alive and dead samples, which are likely responsible for the death of embryos and nestlings. In addition, in these regions, we also found several genes involved in the protein catabolic process (UBE4A and LONP1), lipid metabolism (ACOT1), glycan biosynthesis and metabolism (HYAL1 and HYAL4), and the immune system (JAM2) that are likely to promote the normal development of embryos and nestlings. The aberrant conditions of these genes and biological processes may contribute to the death of embryos and nestlings. Our data identify congenital factors underlying the death of embryos and nestlings at the whole genome level, which may be useful toward informing more effective conservation efforts for this bird species.

The Piranha Genome Provides Molecular Insight Associated to Its Unique Feeding Behavior

Mon, 08 Jul 2019 00:00:00 GMT

The piranha enjoys notoriety due to its infamous predatory behavior but much is still not understood about its evolutionary origins and the underlying molecular mechanisms for its unusual feeding biology. We sequenced and assembled the red-bellied piranha (Pygocentrus nattereri) genome to aid future phenotypic and genetic investigations. The assembled draft genome is similar to other related fishes in repeat composition and gene count. Our evaluation of genes under positive selection suggests candidates for adaptations of piranhas’ feeding behavior in neural functions, behavior, and regulation of energy metabolism. In the fasted brain, we find genes differentially expressed that are involved in lipid metabolism and appetite regulation as well as genes that may control the aggression/boldness behavior of hungry piranhas. Our first analysis of the piranha genome offers new insight and resources for the study of piranha biology and for feeding motivation and starvation in other organisms.

CyMIRA: The Cytonuclear Molecular Interactions Reference for Arabidopsis

Mon, 08 Jul 2019 00:00:00 GMT

The function and evolution of eukaryotic cells depend upon direct molecular interactions between gene products encoded in nuclear and cytoplasmic genomes. Understanding how these cytonuclear interactions drive molecular evolution and generate genetic incompatibilities between isolated populations and species is of central importance to eukaryotic biology. Plants are an outstanding system to investigate such effects because of their two different genomic compartments present in the cytoplasm (mitochondria and plastids) and the extensive resources detailing subcellular targeting of nuclear-encoded proteins. However, the field lacks a consistent classification scheme for mitochondrial- and plastid-targeted proteins based on their molecular interactions with cytoplasmic genomes and gene products, which hinders efforts to standardize and compare results across studies. Here, we take advantage of detailed knowledge about the model angiosperm Arabidopsis thaliana to provide a curated database of plant cytonuclear interactions at the molecular level. CyMIRA (Cytonuclear Molecular Interactions Reference for Arabidopsis) is available at http://cymira.colostate.edu/ and https://github.com/dbsloan/cymira and will serve as a resource to aid researchers in partitioning evolutionary genomic data into functional gene classes based on organelle targeting and direct molecular interaction with cytoplasmic genomes and gene products. It includes 11 categories (and 27 subcategories) of different cytonuclear complexes and types of molecular interactions, and it reports residue-level information for cytonuclear contact sites. We hope that this framework will make it easier to standardize, interpret, and compare studies testing the functional and evolutionary consequences of cytonuclear interactions.

Whole-Genome Sequencing of the Giant Devil Catfish, Bagarius yarrelli

Fri, 05 Jul 2019 00:00:00 GMT

As one economically important fish in the southeastern Himalayas, the giant devil catfish (Bagarius yarrelli) has been known for its extraordinarily large body size. It can grow up to 2 m, whereas the non-Bagarius sisorids only reach 10–30 cm. Another outstanding characteristic of Bagarius species is the salmonids-like reddish flesh color. Both body size and flesh color are interesting questions in science and also valuable features in aquaculture that worth of deep investigations. Bagarius species therefore are ideal materials for studying body size evolution and color depositions in fish muscles, and also potential organisms for extensive utilization in Asian freshwater aquaculture. In a combination of Illumina and PacBio sequencing technologies, we de novo assembled a 571-Mb genome for the giant devil catfish from a total of 153.4-Gb clean reads. The scaffold and contig N50 values are 3.1 and 1.6 Mb, respectively. This genome assembly was evaluated with 93.4% of Benchmarking Universal Single-Copy Orthologs completeness, 98% of transcripts coverage, and highly homologous with a chromosome-level-based genome of channel catfish (Ictalurus punctatus). We detected that 35.26% of the genome assembly is composed of repetitive elements. Employing homology, de novo, and transcriptome-based annotations, we annotated a total of 19,027 protein-coding genes for further use. In summary, we generated the first high-quality genome assembly of the giant devil catfish, which provides an important genomic resource for its future studies such as the body size and flesh color issues, and also for facilitating the conservation and utilization of this valuable catfish.

Pancrustacean Evolution Illuminated by Taxon-Rich Genomic-Scale Data Sets with an Expanded Remipede Sampling

Thu, 04 Jul 2019 00:00:00 GMT

The relationships of crustaceans and hexapods (Pancrustacea) have been much discussed and partially elucidated following the emergence of phylogenomic data sets. However, major uncertainties still remain regarding the position of iconic taxa such as Branchiopoda, Copepoda, Remipedia, and Cephalocarida, and the sister group relationship of hexapods. We assembled the most taxon-rich phylogenomic pancrustacean data set to date and analyzed it using a variety of methodological approaches. We prioritized low levels of missing data and found that some clades were consistently recovered independently of the analytical approach used. These include, for example, Oligostraca and Altocrustacea. Substantial support was also found for Allotriocarida, with Remipedia as the sister of Hexapoda (i.e., Labiocarida), and Branchiopoda as the sister of Labiocarida, a clade that we name Athalassocarida (=”nonmarine shrimps”). Within Allotriocarida, Cephalocarida was found as the sister of Athalassocarida. Finally, moderate support was found for Hexanauplia (Copepoda as sister to Thecostraca) in alliance with Malacostraca. Mapping key crustacean tagmosis patterns and developmental characters across the revised phylogeny suggests that the ancestral pancrustacean was relatively short-bodied, with extreme body elongation and anamorphic development emerging later in pancrustacean evolution.

Clustered Core- and Pan-Genome Content on Rhodobacteraceae Chromosomes

Wed, 03 Jul 2019 00:00:00 GMT

In Bacteria, chromosome replication starts at a single origin of replication and proceeds on both replichores. Due to its asymmetric nature, replication influences chromosome structure and gene organization, mutation rate, and expression. To date, little is known about the distribution of highly conserved genes over the bacterial chromosome. Here, we used a set of 101 fully sequenced Rhodobacteraceae representatives to analyze the relationship between conservation of genes within this family and their distance from the origin of replication. Twenty-two of the analyzed species had core genes clustered significantly closer to the origin of replication with representatives of the genus Celeribacter being the most apparent example. Interestingly, there were also eight species with the opposite organization. In particular, Rhodobaca barguzinensis and Loktanella vestfoldensis showed a significant increase of core genes with distance from the origin of replication. The uneven distribution of low-conserved regions is in particular pronounced for genomes in which the halves of one replichore differ in their conserved gene content. Phage integration and horizontal gene transfer partially explain the scattered nature of Rhodobacteraceae genomes. Our findings lay the foundation for a better understanding of bacterial genome evolution and the role of replication therein.

Comparative Genomics of Wild Bee and Flower Isolated Lactobacillus Reveals Potential Adaptation to the Bee Host

Mon, 01 Jul 2019 00:00:00 GMT

Symbiosis with bacteria is common across insects, resulting in adaptive host phenotypes. The recently described bacterial symbionts Lactobacillus micheneri, Lactobacillus timberlakei, and Lactobacillus quenuiae are found in wild bee pollen provisions, bee guts, and flowers but have small genomes in comparison to other lactobacilli. We sequenced, assembled, and analyzed 27 new L. micheneri clade genomes to identify their possible ecological functions in flower and bee hosts. We determined possible key functions for the L. micheneri clade by identifying genes under positive selection, balancing selection, genes gained or lost, and population structure. A host adherence factor shows signatures of positive selection, whereas other orthologous copies are variable within the L. micheneri clade. The host adherence factors serve as strong evidence that these lactobacilli are adapted to animal hosts as their targets are found in the digestive tract of insects. Next, the L. micheneri clade is adapted toward a nutrient-rich environment, corroborating observations of where L. micheneri is most abundant. Additionally, genes involved in osmotolerance, pH tolerance, temperature resistance, detoxification, and oxidative stress response show signatures of selection that allow these bacteria to thrive in pollen and nectar masses in bee nests and in the bee gut. Altogether, these findings not only suggest that the L. micheneri clade is primarily adapted to the wild bee gut but also exhibit genomic features that would be beneficial to survival in flowers.

Genetic Variation in Human Gene Regulatory Factors Uncovers Regulatory Roles in Local Adaptation and Disease

Sat, 22 Jun 2019 00:00:00 GMT

Differences in gene regulation have been suggested to play essential roles in the evolution of phenotypic changes. Although DNA changes in cis-regulatory elements affect only the regulation of its corresponding gene, variations in gene regulatory factors (trans) can have a broader effect, because the expression of many target genes might be affected. Aiming to better understand how natural selection may have shaped the diversity of gene regulatory factors in human, we assembled a catalog of all proteins involved in controlling gene expression. We found that at least five DNA-binding transcription factor classes are enriched among genes located in candidate regions for selection, suggesting that they might be relevant for understanding regulatory mechanisms involved in human local adaptation. The class of KRAB-ZNFs, zinc-finger (ZNF) genes with a Krüppel-associated box, stands out by first, having the most genes located on candidate regions for positive selection. Second, displaying most nonsynonymous single nucleotide polymorphisms (SNPs) with high genetic differentiation between populations within these regions. Third, having 27 KRAB-ZNF gene clusters with high extended haplotype homozygosity. Our further characterization of nonsynonymous SNPs in ZNF genes located within candidate regions for selection, suggests regulatory modifications that might influence the expression of target genes at population level. Our detailed investigation of three candidate regions revealed possible explanations for how SNPs may influence the prevalence of schizophrenia, eye development, and fertility in humans, among other phenotypes. The genetic variation we characterized here may be responsible for subtle to rough regulatory changes that could be important for understanding human adaptation.

Simultaneous TE Analysis of 19 Heliconiine Butterflies Yields Novel Insights into Rapid TE-Based Genome Diversification and Multiple SINE Births and Deaths

Wed, 19 Jun 2019 00:00:00 GMT

Transposable elements (TEs) play major roles in the evolution of genome structure and function. However, because of their repetitive nature, they are difficult to annotate and discovering the specific roles they may play in a lineage can be a daunting task. Heliconiine butterflies are models for the study of multiple evolutionary processes including phenotype evolution and hybridization. We attempted to determine how TEs may play a role in the diversification of genomes within this clade by performing a detailed examination of TE content and accumulation in 19 species whose genomes were recently sequenced. We found that TE content has diverged substantially and rapidly in the time since several subclades shared a common ancestor with each lineage harboring a unique TE repertoire. Several novel SINE lineages have been established that are restricted to a subset of species. Furthermore, the previously described SINE, Metulj, appears to have gone extinct in two subclades while expanding to significant numbers in others. This diversity in TE content and activity has the potential to impact how heliconiine butterflies continue to evolve and diverge.

Genome-wide SNP Data Reveal an Overestimation of Species Diversity in a Group of Hawkmoths

Wed, 29 May 2019 00:00:00 GMT

The interface between populations and evolving young species continues to generate much contemporary debate in systematics depending on the species concept(s) applied but which ultimately reduces to the fundamental question of “when do nondiscrete entities become distinct, mutually exclusive evolutionary units”? Species are perceived as critical biological entities, and the discovery and naming of new species is perceived by many authors as a major research aim for assessing current biodiversity before much of it becomes extinct. However, less attention is given to determining whether these names represent valid biological entities because this is perceived as both a laborious chore and an undesirable research outcome. The charismatic spurge hawkmoths (Hyles euphorbiae complex, HEC) offer an opportunity to study this less fashionable aspect of systematics. To elucidate this intriguing systematic challenge, we analyzed over 10,000 ddRAD single nucleotide polymorphisms from 62 individuals using coalescent-based and population genomic methodology. These genome-wide data reveal a clear overestimation of (sub)species-level diversity and demonstrate that the HEC taxonomy has been seriously oversplit. We conclude that only one valid species name should be retained for the entire HEC, namely Hyles euphorbiae, and we do not recognize any formal subspecies or other taxonomic subdivisions within it. Although the adoption of genetic tools has frequently revealed morphologically cryptic diversity, the converse, taxonomic oversplitting of species, is generally (and wrongly in our opinion) accepted as rare. Furthermore, taxonomic oversplitting is most likely to have taken place in intensively studied popular and charismatic organisms such as the HEC.