Joseph Felsenstein is Professor in the Departments of Genome Sciences and Biology and Adjunct Professor in the Departments of Computer Science and Statistics at the University of Washington in Seattle. He is best known for his work on phylogenetic inference, and is the author of Inferring Phylogenies, and principal author and distributor of the package of phylogenetic inference programs called PHYLIP, and is currently serving as the President of the Society for Molecular Biology & Evolution.

You can reach Joe at president.smbe@gmail.com

James McInerney is the principle investigator of the Bioinformatics and Molecular Evolution Laboratories at NUI Maynooth. He was one of the founding directors of the Irish Centre for High End Computing, an Associate Editor of Molecular Biology and Evolution, Biology Direct, and Journal of Experimental Zoology, and is currently serving as the Secretary for the Society for Molecular Biology and Evolution.

You can reach James at secretary.smbe@gmail.com

Juliette de Meaux is interested in the molecular basis of Darwinian adaptation in natural plant systems. Her works combines the approaches of population, quantitative and molecular genetics to dissect the underpinning of adaptive changes. She completed her PhD at AgroParisTech, under the supervision of Prof. Claire Neema and studied the molecular basis of host-pathogen coevolution in natural populations of common bean. She then spent her Postdoc time in the lab of Prof. Tom Mitchell-Olds at the Max Planck Institute of Chemical Ecology in Jena and worked on the evolution of cis-regulatory DNA. Since 2005, she runs her own lab, first at the Max Planck Institute of Plant Breeding in Cologne and then at the University of Münster. In January 2015, she relocated her lab at the University of Cologne. She is currently serving as the Treasurer for the Society for Molecular Biology and Evolution.

You can reach Juliette at treasurer.smbe@gmail.com

Login

Username:
Password:
Forgot username/password?

Registration and Membership

Non-Members: You must Register for an account to purchase a membership and conduct other transactions. Future visits to the website will only require login.

After login or registration: You may conduct online transactions such as joining or renewing a membership, registering for an annual meeting and making donations.

Events Calendar

Check out our Events Calendar
for upcoming meetings. 

If you have an event you wish to add,
just email it to secretary.smbe@gmail.com

About

The Society for Molecular Biology and Evolution is an international organization whose goals are to provide facilities for association and communication among molecular evolutionists and to further the goals of molecular evolution, as well as its practitioners and teachers. In order to accomplish these goals, the Society publishes two peer-reviewed journals, Molecular Biology and Evolution and Genome Biology and Evolution. The Society sponsors an annual meeting, as well as smaller satellite meetings or workshop on important, focused, and timely topics. It also confers honors and awards to students and researchers.

SMBE 2017

On behalf of the organising committee it is our pleasure to invite you to attend SMBE 2017 - the annual meeting of the Society for Molecular Biology and Evolution. SMBE 2017 will be held from the 2nd-6th of July at the JW Marriott in Austin, TX, USA. The meeting - including plenary talks, symposia presentations, the Walter Fitch symposium, and poster sessions - will showcase the latest research in genomics, population genetics, and molecular biology and evolution. Social activities will include an opening reception, mixers with each poster session, and a conference dinner. We’re looking forward to seeing you in Austin this summer!

More information can be found HERE

Featured News and Updates

Plan to Participate - SMBE 2018 in Yokohama, Japan

SMBE2018, Yokohama, Japan, website is live

http://smbe2018.jp/

Continue Reading →


  • Friday, August 04, 2017
  • Comments (0)

SMBE satellite symposium on Molecular Evolution and Medicine

SMBE members are invited to attend a two-day symposium on Molecular Evolution and Medicine. SMBE members will receive a 50% discount on the registration fee if they use the TEMPLE50 discount code.

Location: Temple University, Philadelphia, USA
Program (Day 1): September 16, 2017: Molecular Evolution informs Medicine talks and posters (Temple sponsored)
Program (Day 2): September 17, 2017: Molecular Evolutionary Genetics (Nei Celebration; SMBE sponsored)

Program information is listed at http://igem.temple.edu/mem/program (>40 speakers)

To register, click on http://igem.temple.edu/mem/registration (use discount code TEMPLE50)

To present a contributed talk or poster, visit http://igem.temple.edu/mem/abstracts (deadline August 15)



Continue Reading →


  • Friday, August 04, 2017
  • Comments (0)

Three Rivers Evolution Event 2017

The first annual Three Rivers Evolutionary Event (TREE) aims to bring together researchers from the areas surrounding Pittsburgh, PA in the common interest of discussing evolution.

TREE is intended to promote the study of evolution in the broadest sense, including observational and experimental studies under natural and controlled conditions. The research of attending members is expected to span viruses, microbes, plants, invertebrates and vertebrates, and include anthropology, epidemiology, developmental biology, ecology, zoology, theoretical, applied, urban ecology, paleontology, and many other specialized research areas.

Individuals from all backgrounds are welcome, and early-career researchers are encouraged to present.

Three Rivers Evolution Event 2017....September 9, 2017....an SMBE-sponsored regional meeting

http://sites.google.com/view/tree2017/s   @biotree2017   #tree2017


Continue Reading →


  • Tuesday, July 18, 2017
  • Comments (0)

VI Simposio ColEvol

VI Simposio ColEvol
Colombian Symposium on Evolutionary Biology VI 
August 14-16, 2017, introductory course, 
Aug17-19, main meeting. 
an SMBE-sponsored regional meeting 
http://visimposiocolevol.correounivalle.edu.co/

Continue Reading →


  • Tuesday, July 18, 2017
  • Comments (0)

SMBE 2017 Faculty Awards

Congratulations to the winners of the SMBE 2017 annual faculty awards! As announced at the SMBE 2017 Annual Meeting:

• Mia Levine won the Allan Wilson Junior Award for Independent Research

• Toni Gabaldón won the Margaret Dayhoff Mid-Career Award

• W. Ford Doolittle won the Motoo Kimura Lifetime Contribution Award

• Sudhir Kumar won the 2017 SMBE Community Service Award.

Continue Reading →


  • Friday, July 07, 2017
  • Comments (0)

SMBE 2017 Student and Postdoctoral Awards

Congratulations to the winners of the SMBE 2017 annual student and postdoctoral researcher awards!

As announced at the SMBE 2017 Annual Meeting:

• Alejandra Rodríguez-Verdugo won the MBE Best Student Paper Award (https://www.ncbi.nlm.nih.gov/pubmed/26500250)

• Anouk Willemsen won the GBE best student paper award (https://www.ncbi.nlm.nih.gov/pubmed/27604880)

• Anna Vickrey won the Walter M. Fitch Award for Best Student Presentation.

Best Poster Awards went for Postdoctoral Researchers went to:

• Marc Tollis
• Elizabeth Atkinson
• Atahualpa Castillo Morales

Best Poster Awards went for PhD Students went to:

• James Fleming
• Pinglin Cao
• Magdalena Kubiak

Best Poster Awards went for Undergraduate Researchers went to:

• Isabella Jeronimo Bezerra Marcos
• Joseph Palmer
• Dan Werndly

Continue Reading →


  • Friday, July 07, 2017
  • Comments (0)

@OfficialSMBE Feed

MBE | Most Read

Molecular Biology and Evolution

2017-08-03

2017-08-03

2017-08-03

Did Medieval Religious Rules Drive Domestic Chicken Evolution?

2017-08-03

2017-08-03

2017-05-19

2017-05-15

2017-05-08

2017-05-04

2017-05-02

TSHR and BCDO2, both hypothesised to have undergone strong and recent selection in domestic chickens. The derived variant in TSHR, associated with reduced aggression to conspecifics and faster onset of egg laying, shows strong selection beginning around 1,100 years ago, coincident with archaeological evidence for intensified chicken production and documented changes in egg and chicken consumption. To our knowledge, this is the first example of preindustrial domesticate trait selection in response to a historically attested cultural shift in food preference. For BCDO2, we find support for selection, but demonstrate that the recent rise in allele frequency could also have been driven by gene flow from imported Asian chickens during more recent breed formations. Our findings highlight that traits found ubiquitously in modern domestic species may not necessarily have originated during the early stages of domestication. In addition, our results demonstrate the importance of precise estimation of allele frequency trajectories through time for understanding the drivers of selection.

2017-04-29

2017-04-29

BLAST and InterProScan. Orthology filters applied to BLAST results reduced the rate of false positive assignments by 11%, and increased the ratio of experimentally validated terms recovered over all terms assigned per protein by 15%. Compared with InterProScan, eggNOG-mapper achieved similar proteome coverage and precision while predicting, on average, 41 more terms per protein and increasing the rate of experimentally validated terms recovered over total term assignments per protein by 35%. EggNOG-mapper predictions scored within the top-5 methods in the three GO categories using the CAFA2 NK-partial benchmark. Finally, we evaluated eggNOG-mapper for functional annotation of metagenomics data, yielding better performance than interProScan. eggNOG-mapper runs ∼15× faster than BLAST and at least 2.5× faster than InterProScan. The tool is available standalone and as an online service at http://eggnog-mapper.embl.de.">http://eggnog-mapper.embl.de">http://eggnog-mapper.embl.de.

2017-04-28

2017-04-28

2017-04-27

2017-04-27

2017-04-21

2017-04-21

the frequency of the derived allele, rs117799927 G, was extremely low among worldwide populations (0.005) but exceptionally high in Mongolians (0.247). Approximate Bayesian computation-based age estimation showed that the rs117799927 G allele emerged or positive selection began to operate 50 generations before the present, near the age of the climate anomaly named Late Antique Little Ice Age. Furthermore, rs117799927 showed significant associations with multiple adiposity-related traits in Mongolians and allelic difference in enhancer activity in cells of adipocyte lineage, suggesting that positive selection at 3p12.1 might be related to adaptation in the energy metabolism system. These findings provide novel evidence for a very recent positive-selection event in Homo sapiens and offer insights into the roles of genes in 3p12.1 in the adaptive evolution of our species.

2017-04-21

Could Mitochondria “Bend” Nuclear Regulation?

2017-04-21

2017-04-19

2017-04-18

2017-04-18

2017-04-14

2017-04-14

2017-04-12

2017-04-08

site specific editing, which frequently leads to recoding, and clustered editing, which is usually found in transcribed genomic repeats. Here, for the first time, we looked for both editing of isolated sites and clustered, non-specific sites in a basal metazoan, the coral Acropora millepora during spawning event, in order to reveal its editing pattern. We found that the coral editome resembles the mammalian one: it contains more than 500,000 sites, virtually all of which are clustered in non-coding regions that are enriched for predicted dsRNA structures. RNA editing levels were increased during spawning and increased further still in newly released gametes. This may suggest that editing plays a role in introducing variability in coral gametes.

2017-04-08

2017-04-04

GBE | Most Read

Genome Biology & Evolution

Phylogenomic Resolution of the Phylogeny of Laurasiatherian Mammals: Exploring Phylogenetic Signals within Coding and Noncoding Sequences

2017-08-02

Abstract
The interordinal relationships of Laurasiatherian mammals are currently one of the most controversial questions in mammalian phylogenetics. Previous studies mainly relied on coding sequences (CDS) and seldom used noncoding sequences. Here, by data mining public genome data, we compiled an intron data set of 3,638 genes (all introns from a protein-coding gene are considered as a gene) (19,055,073 bp) and a CDS data set of 10,259 genes (20,994,285 bp), covering all major lineages of Laurasiatheria (except Pholidota). We found that the intron data contained stronger and more congruent phylogenetic signals than the CDS data. In agreement with this observation, concatenation and species-tree analyses of the intron data set yielded well-resolved and identical phylogenies, whereas the CDS data set produced weakly supported and incongruent results. Further analyses showed that the phylogeny inferred from the intron data is highly robust to data subsampling and change in outgroup, but the CDS data produced unstable results under the same conditions. Interestingly, gene tree statistical results showed that the most frequently observed gene tree topologies for the CDS and intron data are identical, suggesting that the major phylogenetic signal within the CDS data is actually congruent with that within the intron data. Our final result of Laurasiatheria phylogeny is (Eulipotyphla,((Chiroptera, Perissodactyla),(Carnivora, Cetartiodactyla))), favoring a close relationship between Chiroptera and Perissodactyla. Our study 1) provides a well-supported phylogenetic framework for Laurasiatheria, representing a step towards ending the long-standing “hard” polytomy and 2) argues that intron within genome data is a promising data resource for resolving rapid radiation events across the tree of life.

Genome-Wide SNP Analysis Reveals Distinct Origins of Trypanosoma evansi and Trypanosoma equiperdum

2017-05-25

Abstract
Trypanosomes cause a variety of diseases in man and domestic animals in Africa, Latin America, and Asia. In the Trypanozoon subgenus, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense cause human African trypanosomiasis, whereas Trypanosoma brucei brucei, Trypanosoma evansi, and Trypanosoma equiperdum are responsible for nagana, surra, and dourine in domestic animals, respectively. The genetic relationships between T. evansi and T. equiperdum and other Trypanozoon species remain unclear because the majority of phylogenetic analyses has been based on only a few genes. In this study, we have conducted a phylogenetic analysis based on genome-wide SNP analysis comprising 56 genomes from the Trypanozoon subgenus. Our data reveal that T. equiperdum has emerged at least once in Eastern Africa and T. evansi at two independent occasions in Western Africa. The genomes within the T. equiperdum and T. evansi monophyletic clusters show extremely little variation, probably due to the clonal spread linked to the independence from tsetse flies for their transmission.